IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Efficient tests of the seasonal unit root hypothesis

  • Rodrigues, Paulo M.M.
  • Taylor, A.M. Robert

In this paper we derive, under the assumption of Gaussian errors with known error covariance matrix, asymptotic local power bounds for seasonal unit root tests for both known and unknown deterministic scenarios and for an arbitrary seasonal aspect. We demonstrate that the optimal test of a unit root at a given spectral frequency behaves asymptotically independently of whether unit roots exist at other frequencies or not. We also develop modified versions of the optimal tests which attain the asymptotic Gaussian power bounds under much weaker conditions. We further propose near-efficient regression-based seasonal unit root tests using pseudo-GLS de-trending and show that these have limiting null distributions and asymptotic local power functions of a known form. Monte Carlo experiments indicate that the regression-based tests perform well in finite samples.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/B6VC0-4MH8BNR-2/2/5957ef6135826e5d98763e74673fe38a
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Econometrics.

Volume (Year): 141 (2007)
Issue (Month): 2 (December)
Pages: 548-573

as
in new window

Handle: RePEc:eee:econom:v:141:y:2007:i:2:p:548-573
Contact details of provider: Web page: http://www.elsevier.com/locate/jeconom

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. J. Breitung & P. H. Franses, 1996. "On Phillips-Perron Type Tests for Seasonal Unit Roots," SFB 373 Discussion Papers 1996,27, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  2. Ghysels, Eric & Lee, Hahn S. & Noh, Jaesum, 1994. "Testing for unit roots in seasonal time series : Some theoretical extensions and a Monte Carlo investigation," Journal of Econometrics, Elsevier, vol. 62(2), pages 415-442, June.
  3. Paulo M.M. Rodrigues & A.M. Robert Taylor, 2004. "Efficient Tests of the Seasonal Unit Root Hypothesis," Economics Working Papers ECO2004/29, European University Institute.
  4. Serena Ng & Pierre Perron, 1997. "Lag Length Selection and the Construction of Unit Root Tests with Good Size and Power," Boston College Working Papers in Economics 369, Boston College Department of Economics, revised 01 Sep 2000.
  5. Burridge, Peter & Taylor, A M Robert, 2001. "On the Properties of Regression-Based Tests for Seasonal Unit Roots in the Presence of Higher-Order Serial Correlation," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(3), pages 374-79, July.
  6. Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996. "Efficient Tests for an Autoregressive Unit Root," Econometrica, Econometric Society, vol. 64(4), pages 813-36, July.
  7. Paulo M. M. Rodrigues, 2002. "On LM type tests for seasonal unit roots in quarterly data," Econometrics Journal, Royal Economic Society, vol. 5(1), pages 176-195, June.
  8. Joseph Beaulieu, J. & Miron, Jeffrey A., 1993. "Seasonal unit roots in aggregate U.S. data," Journal of Econometrics, Elsevier, vol. 55(1-2), pages 305-328.
  9. Richard Smith & Robert Taylor, . "Additional Critical Values and Asymptotic Representations for Seasonal Unit Root Tests," Discussion Papers 95/43, Department of Economics, University of York.
  10. Rodrigues, Paulo M. M. & Taylor, A. M. Robert, 2004. "Alternative estimators and unit root tests for seasonal autoregressive processes," Journal of Econometrics, Elsevier, vol. 120(1), pages 35-73, May.
  11. Hylleberg, S. & Engle, R.F. & Granger, C.W.J. & Yoo, B.S., 1988. "Seasonal, Integration And Cointegration," Papers 6-88-2, Pennsylvania State - Department of Economics.
  12. Jeganathan, P., 1991. "On the Asymptotic Behavior of Least-Squares Estimators in AR Time Series with Roots Near the Unit Circle," Econometric Theory, Cambridge University Press, vol. 7(03), pages 269-306, September.
  13. Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2004. "Asymptotic Distributions For Regression-Based Seasonal Unit Root Test Statistics In A Near-Integrated Model," Econometric Theory, Cambridge University Press, vol. 20(04), pages 645-670, August.
  14. Schmidt, Peter & Phillips, C B Peter, 1992. "LM Tests for a Unit Root in the Presence of Deterministic Trends," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 54(3), pages 257-87, August.
  15. Rodrigues, Paulo M.M., 2001. "Near Seasonal Integration," Econometric Theory, Cambridge University Press, vol. 17(01), pages 70-86, February.
  16. repec:cup:cbooks:9780521565882 is not listed on IDEAS
  17. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-72, June.
  18. Gregoir, Stephane, 2006. "Efficient tests for the presence of a pair of complex conjugate unit roots in real time series," Journal of Econometrics, Elsevier, vol. 130(1), pages 45-100, January.
  19. repec:cup:cbooks:9780521562607 is not listed on IDEAS
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:141:y:2007:i:2:p:548-573. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.