IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v35y2016i1p122-168.html
   My bibliography  Save this article

The Performance of Lag Selection and Detrending Methods for HEGY Seasonal Unit Root Tests

Author

Listed:
  • Tom�s del Barrio Castro
  • Denise R. Osborn
  • A.M. Robert Taylor

Abstract

This paper analyzes two key issues for the empirical implementation of parametric seasonal unit root tests, namely generalized least squares (GLS) versus ordinary least squares (OLS) detrending and the selection of the lag augmentation polynomial. Through an extensive Monte Carlo analysis, the performance of a battery of lag selection techniques is analyzed, including a new extension of modified information criteria for the seasonal unit root context. All procedures are applied for both OLS and GLS detrending for a range of data generating processes, also including an examination of hybrid OLS-GLS detrending in conjunction with (seasonal) modified AIC lag selection. An application to quarterly U.S. industrial production indices illustrates the practical implications of choices made.

Suggested Citation

  • Tom�s del Barrio Castro & Denise R. Osborn & A.M. Robert Taylor, 2016. "The Performance of Lag Selection and Detrending Methods for HEGY Seasonal Unit Root Tests," Econometric Reviews, Taylor & Francis Journals, vol. 35(1), pages 122-168, January.
  • Handle: RePEc:taf:emetrv:v:35:y:2016:i:1:p:122-168
    DOI: 10.1080/07474938.2013.807710
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07474938.2013.807710
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Tomás del Barrio Castro & Denise R. Osborn, 2012. "Non‐parametric testing for seasonally and periodically integrated processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(3), pages 424-437, May.
    2. Rodrigues, Paulo M. M. & Taylor, A. M. Robert, 2004. "Alternative estimators and unit root tests for seasonal autoregressive processes," Journal of Econometrics, Elsevier, vol. 120(1), pages 35-73, May.
    3. Joseph Beaulieu, J. & Miron, Jeffrey A., 1993. "Seasonal unit roots in aggregate U.S. data," Journal of Econometrics, Elsevier, vol. 55(1-2), pages 305-328.
    4. Taylor, A. M. Robert, 2005. "Variance ratio tests of the seasonal unit root hypothesis," Journal of Econometrics, Elsevier, vol. 124(1), pages 33-54, January.
    5. Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996. "Efficient Tests for an Autoregressive Unit Root," Econometrica, Econometric Society, vol. 64(4), pages 813-836, July.
    6. Burridge, Peter & Wallis, Kenneth F, 1984. "Unobserved-Components Models for Seasonal Adjustment Filters," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(4), pages 350-359, October.
    7. Hylleberg, S. & Engle, R. F. & Granger, C. W. J. & Yoo, B. S., 1990. "Seasonal integration and cointegration," Journal of Econometrics, Elsevier, vol. 44(1-2), pages 215-238.
    8. Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2007. "Efficient tests of the seasonal unit root hypothesis," Journal of Econometrics, Elsevier, vol. 141(2), pages 548-573, December.
    9. Richard J. Smith & A. M. Robert Taylor, 1999. "Likelihood Ratio Tests for Seasonal Unit Roots," Journal of Time Series Analysis, Wiley Blackwell, vol. 20(4), pages 453-476, July.
    10. Smith, Richard J. & Taylor, A. M. Robert, 1998. "Additional critical values and asymptotic representations for seasonal unit root tests," Journal of Econometrics, Elsevier, vol. 85(2), pages 269-288, August.
    11. Hall, Alastair R, 1994. "Testing for a Unit Root in Time Series with Pretest Data-Based Model Selection," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 461-470, October.
    12. Taylor, A. M. Robert, 1997. "On the practical problems of computing seasonal unit root tests," International Journal of Forecasting, Elsevier, vol. 13(3), pages 307-318, September.
    13. Gregoir, Stephane, 2006. "Efficient tests for the presence of a pair of complex conjugate unit roots in real time series," Journal of Econometrics, Elsevier, vol. 130(1), pages 45-100, January.
    14. Yoosoon Chang & Joon Park, 2002. "On The Asymptotics Of Adf Tests For Unit Roots," Econometric Reviews, Taylor & Francis Journals, vol. 21(4), pages 431-447.
    15. Smith, Richard J. & Taylor, A.M. Robert & del Barrio Castro, Tomas, 2009. "Regression-Based Seasonal Unit Root Tests," Econometric Theory, Cambridge University Press, vol. 25(2), pages 527-560, April.
    16. Serena Ng & Pierre Perron, 2001. "LAG Length Selection and the Construction of Unit Root Tests with Good Size and Power," Econometrica, Econometric Society, vol. 69(6), pages 1519-1554, November.
    17. Ghysels, Eric & Lee, Hahn S. & Noh, Jaesum, 1994. "Testing for unit roots in seasonal time series : Some theoretical extensions and a Monte Carlo investigation," Journal of Econometrics, Elsevier, vol. 62(2), pages 415-442, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. del Barrio Castro, Tomás & Rodrigues, Paulo M.M. & Robert Taylor, A.M., 2018. "Semi-Parametric Seasonal Unit Root Tests," Econometric Theory, Cambridge University Press, vol. 34(2), pages 447-476, April.
    2. Tomás Barrio Castro & Andrii Bodnar & Andreu Sansó, 2017. "Numerical distribution functions for seasonal unit root tests with OLS and GLS detrending," Computational Statistics, Springer, vol. 32(4), pages 1533-1568, December.
    3. del Barrio Castro, Tomás & Hecq, Alain, 2016. "Testing for deterministic seasonality in mixed-frequency VARs," Economics Letters, Elsevier, vol. 149(C), pages 20-24.
    4. del Barrio Castro, Tomás & Cubada, Ginaluca & Osborn, Denise R., 2020. "On cointegration for processes integrated at different frequencies," MPRA Paper 102611, University Library of Munich, Germany.
    5. Politis, Dimitris, 2016. "HEGY test under seasonal heterogeneity," University of California at San Diego, Economics Working Paper Series qt2q4054kf, Department of Economics, UC San Diego.
    6. Eroğlu, Burak Alparslan & Göğebakan, Kemal Çağlar & Trokić, Mirza, 2018. "Powerful nonparametric seasonal unit root tests," Economics Letters, Elsevier, vol. 167(C), pages 75-80.
    7. Ikerne Valle & Kepa Astorkiza & Ignacio Díaz-Emparanza, 2017. "Measuring species concentration, diversification and dependency in a macro-fishery," Empirical Economics, Springer, vol. 52(4), pages 1689-1713, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Castro, Tomás del Barrio & Osborn, Denise R. & Taylor, A.M. Robert, 2012. "On Augmented Hegy Tests For Seasonal Unit Roots," Econometric Theory, Cambridge University Press, vol. 28(5), pages 1121-1143, October.
    2. del Barrio Castro, Tomás & Rodrigues, Paulo M.M. & Robert Taylor, A.M., 2018. "Semi-Parametric Seasonal Unit Root Tests," Econometric Theory, Cambridge University Press, vol. 34(2), pages 447-476, April.
    3. Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2007. "Efficient tests of the seasonal unit root hypothesis," Journal of Econometrics, Elsevier, vol. 141(2), pages 548-573, December.
    4. Chambers, Marcus J. & Ercolani, Joanne S. & Taylor, A.M. Robert, 2014. "Testing for seasonal unit roots by frequency domain regression," Journal of Econometrics, Elsevier, vol. 178(P2), pages 243-258.
    5. Burridge, Peter & Robert Taylor, A. M., 2004. "Bootstrapping the HEGY seasonal unit root tests," Journal of Econometrics, Elsevier, vol. 123(1), pages 67-87, November.
    6. Tomás Barrio Castro & Andrii Bodnar & Andreu Sansó, 2017. "Numerical distribution functions for seasonal unit root tests with OLS and GLS detrending," Computational Statistics, Springer, vol. 32(4), pages 1533-1568, December.
    7. Rodrigues, Paulo M. M. & Taylor, A. M. Robert, 2004. "Alternative estimators and unit root tests for seasonal autoregressive processes," Journal of Econometrics, Elsevier, vol. 120(1), pages 35-73, May.
    8. Jansson Michael & Nielsen Morten Ørregaard, 2011. "Nearly Efficient Likelihood Ratio Tests for Seasonal Unit Roots," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-21, February.
    9. Smith, Richard J. & Robert Taylor, A. M., 2001. "Recursive and rolling regression-based tests of the seasonal unit root hypothesis," Journal of Econometrics, Elsevier, vol. 105(2), pages 309-336, December.
    10. Olivier Darné & Claude Diebolt, 2002. "A Note on Seasonal Unit Root Tests," Quality & Quantity: International Journal of Methodology, Springer, vol. 36(3), pages 305-310, August.
    11. Castro, Tomás del Barrio & Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2013. "The Impact Of Persistent Cycles On Zero Frequency Unit Root Tests," Econometric Theory, Cambridge University Press, vol. 29(6), pages 1289-1313, December.
    12. Paulo Rodrigues & Denise Osborn, 1999. "Performance of seasonal unit root tests for monthly data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(8), pages 985-1004.
    13. Artur Silva Lopes, 2006. "Deterministic seasonality in Dickey–Fuller tests: should we care?," Empirical Economics, Springer, vol. 31(1), pages 165-182, March.
    14. Tomas del Barrio Castro, 2007. "Using the HEGY Procedure When Not All Roots Are Present," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(6), pages 910-922, November.
    15. Pami Dua & Lokendra Kumawat, 2005. "Modelling and Forecasting Seasonality in Indian Macroeconomic Time Series," Working papers 136, Centre for Development Economics, Delhi School of Economics.
    16. Haldrup, Niels & Montanes, Antonio & Sanso, Andreu, 2005. "Measurement errors and outliers in seasonal unit root testing," Journal of Econometrics, Elsevier, vol. 127(1), pages 103-128, July.
    17. John D. Levendis, 2018. "Time Series Econometrics," Springer Texts in Business and Economics, Springer, number 978-3-319-98282-3, April.
    18. Atle Oglend & Frank Asche, 2016. "Cyclical non-stationarity in commodity prices," Empirical Economics, Springer, vol. 51(4), pages 1465-1479, December.
    19. Eroğlu, Burak Alparslan & Göğebakan, Kemal Çağlar & Trokić, Mirza, 2018. "Powerful nonparametric seasonal unit root tests," Economics Letters, Elsevier, vol. 167(C), pages 75-80.
    20. Burridge, P. & Gjorstrup, F. & Robert Taylor, A. M., 2004. "Robust Inference on Seasonal Unit Roots via a Bootstrap Applied to OECD Macroeconomic Series," Working Papers 04/08, Department of Economics, City University London.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:35:y:2016:i:1:p:122-168. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://www.tandfonline.com/LECR20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.