IDEAS home Printed from https://ideas.repec.org/p/ubi/deawps/76.html
   My bibliography  Save this paper

Testing for Deterministic Seasonality in Mixed-Frequency VARs

Author

Listed:

Abstract

This paper investigates the presence of deterministic seasonal features within a mixed frequency vector autoregressive model. A strategy based on Wald tests is proposed.

Suggested Citation

  • Tomás del Barrio Castro & Alain Hecq, 2016. "Testing for Deterministic Seasonality in Mixed-Frequency VARs," DEA Working Papers 76, Universitat de les Illes Balears, Departament d'Economía Aplicada.
  • Handle: RePEc:ubi:deawps:76
    as

    Download full text from publisher

    File URL: http://www.uib.es/depart/deaweb/deawp/pdf/w76.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
    2. Tomás del Barrio Castro & Denise R. Osborn & A.M. Robert Taylor, 2016. "The Performance of Lag Selection and Detrending Methods for HEGY Seasonal Unit Root Tests," Econometric Reviews, Taylor & Francis Journals, vol. 35(1), pages 122-168, January.
    3. Claudia Foroni & Pierre Guérin & Massimiliano Marcellino, 2015. "Using low frequency information for predicting high frequency variables," Working Paper 2015/13, Norges Bank.
    4. Götz, Thomas B. & Hecq, Alain & Smeekes, Stephan, 2016. "Testing for Granger causality in large mixed-frequency VARs," Journal of Econometrics, Elsevier, vol. 193(2), pages 418-432.
    5. Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2007. "Efficient tests of the seasonal unit root hypothesis," Journal of Econometrics, Elsevier, vol. 141(2), pages 548-573, December.
    6. Tomás del Barrio Castro & Andrii Bodnar & Andreu Sansó, 2016. "The lag-length selection and detrending methods for HEGY seasonal unit-root tests using Stata," Stata Journal, StataCorp LP, vol. 16(3), pages 740-760, September.
    7. Hecq A.W. & Urbain J.R.Y.J. & Götz T.B., 2013. "Testing for common cycles in non-stationary VARs with varied frecquency data," Research Memorandum 002, Maastricht University, Graduate School of Business and Economics (GSBE).
    8. Engle, Robert F & Hylleberg, Svend, 1996. "Common Seasonal Features: Global Unemployment," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 58(4), pages 615-630, November.
    9. Ghysels, Eric & Hill, Jonathan B. & Motegi, Kaiji, 2016. "Testing for Granger causality with mixed frequency data," Journal of Econometrics, Elsevier, vol. 192(1), pages 207-230.
    10. Maravall, Agustin, 1993. "Stochastic linear trends : Models and estimators," Journal of Econometrics, Elsevier, vol. 56(1-2), pages 5-37, March.
    11. Götz, Thomas B. & Hecq, Alain, 2014. "Nowcasting causality in mixed frequency vector autoregressive models," Economics Letters, Elsevier, vol. 122(1), pages 74-78.
    12. Ghysels, Eric, 2016. "Macroeconomics and the reality of mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 294-314.
    13. Ghysels,Eric & Osborn,Denise R., 2001. "The Econometric Analysis of Seasonal Time Series," Cambridge Books, Cambridge University Press, number 9780521565882, April.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    deterministic seasonal features; mixed frequency VARs;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ubi:deawps:76. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Xisco Oliver). General contact details of provider: http://edirc.repec.org/data/dauibes.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.