IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Common intraday periodicity

  • Hecq Alain
  • Laurent Sébastien
  • Palm Franz


Using a reduced rank regression framework as well as information criteria we investigate the presence of commonalities in the intraday periodicity, a dominant feature in the return volatility of most intraday financial time series. We find that the test has little size distortion and reasonable power even in the presence of jumps. We also find that only three factors are needed to describe the intraday periodicity of thirty US asset returns sampled at the 5-minute frequency. Interestingly, we find that for most series the models imposing these commonalities deliver better forecasts of the conditional intraday variance than those where the intraday periodicity is estimated for each asset separately.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR) in its series Research Memorandum with number 010.

in new window

Date of creation: 2011
Date of revision:
Handle: RePEc:unm:umamet:2011010
Contact details of provider: Postal:
P.O. Box 616, 6200 MD Maastricht

Phone: +31 (0)43 38 83 830
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Sébastien Laurent & Jeroen V. K. Rombouts & Francesco Violante, 2012. "On the forecasting accuracy of multivariate GARCH models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 934-955, 09.
  2. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-44, January.
  3. Hansen, Peter Reinhard & Lunde, Asger, 2006. "Consistent ranking of volatility models," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 97-121.
  4. George Athanasopoulos & Osmani Teixeira de Carvalho Guillén & João Victor Issler & Farshid Vahid, 2010. "Model selection, estimation and forecasting in VAR models with short-run and long-run restrictions," Working Papers Series 205, Central Bank of Brazil, Research Department.
  5. Engle, Robert F & Susmel, Raul, 1993. "Common Volatility in International Equity Markets," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(2), pages 167-76, April.
  6. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
  7. Dionne, Georges & Duchesne, Pierre & Pacurar, Maria, 2009. "Intraday Value at Risk (IVaR) using tick-by-tick data with application to the Toronto Stock Exchange," Journal of Empirical Finance, Elsevier, vol. 16(5), pages 777-792, December.
  8. Ole E. Barndorff-Nielsen, 2004. "Power and Bipower Variation with Stochastic Volatility and Jumps," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(1), pages 1-37.
  9. Torben G. Andersen & Dobrislav Dobrev & Ernst Schaumburg, 2010. "Jump-robust volatility estimation using nearest neighbor truncation," Staff Reports 465, Federal Reserve Bank of New York.
  10. Raffaella Giacomini & Halbert White, 2003. "Tests of Conditional Predictive Ability," Econometrics 0308001, EconWPA.
  11. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
  12. Suzanne S. Lee & Per A. Mykland, 2008. "Jumps in Financial Markets: A New Nonparametric Test and Jump Dynamics," Review of Financial Studies, Society for Financial Studies, vol. 21(6), pages 2535-2563, November.
  13. Hecq Alain & Laurent Sébastien & Palm Franz, 2011. "On the Univariate Representation of Multivariate Volatility Models with Common Factors," Research Memorandum 011, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
  14. Neil Shephard & Ole E. Barndorff-Nielsen, 2003. "Power and bipower variation with stochastic volatility and jumps," Economics Series Working Papers 2003-W18, University of Oxford, Department of Economics.
  15. Engle, Robert F. & Marcucci, Juri, 2006. "A long-run Pure Variance Common Features model for the common volatilities of the Dow Jones," Journal of Econometrics, Elsevier, vol. 132(1), pages 7-42, May.
  16. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
  17. Visser, Marcel P., 2008. "Garch Parameter Estimation Using High-Frequency Data," MPRA Paper 9076, University Library of Munich, Germany.
  18. Taylor, Stephen J. & Xu, Xinzhong, 1997. "The incremental volatility information in one million foreign exchange quotations," Journal of Empirical Finance, Elsevier, vol. 4(4), pages 317-340, December.
  19. Pierre Giot, 2005. "Market risk models for intraday data," The European Journal of Finance, Taylor & Francis Journals, vol. 11(4), pages 309-324.
  20. Drost, F.C. & Werker, B.J.M., 1994. "Closing the GARCH gap : Continuous time GARCH modeling," Discussion Paper 1994-2, Tilburg University, Center for Economic Research.
  21. Engle, Robert F & Hylleberg, Svend, 1996. "Common Seasonal Features: Global Unemployment," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 58(4), pages 615-30, November.
  22. Nelson, Daniel B., 1990. "ARCH models as diffusion approximations," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 7-38.
  23. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 7(2), pages 174-196, Spring.
  24. Andersen, Torben G. & Bollerslev, Tim, 1997. "Intraday periodicity and volatility persistence in financial markets," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 115-158, June.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:unm:umamet:2011010. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Leonne Portz)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.