IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Forecasting the volatility of crude oil futures using intraday data

Listed author(s):
  • Sévi, Benoît

We use the information in intraday data to forecast the volatility of crude oil at a horizon of 1–66days using a variety of models relying on the decomposition of realized variance in its positive or negative (semivariances) part and its continuous or discontinuous part (jumps). We show the importance of these decompositions in predictive (in-sample) regressions using a number of specifications. Nevertheless, an important empirical finding comes from an out-of-sample analysis which unambiguously shows the limited interest of considering these components. Overall, our results indicates that a simple autoregressive specification mimicking long memory and using past realized variances as predictors does not perform significantly worse than more sophisticated models which include the various components of realized variance.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S037722171400040X
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal European Journal of Operational Research.

Volume (Year): 235 (2014)
Issue (Month): 3 ()
Pages: 643-659

as
in new window

Handle: RePEc:eee:ejores:v:235:y:2014:i:3:p:643-659
DOI: 10.1016/j.ejor.2014.01.019
Contact details of provider: Web page: http://www.elsevier.com/locate/eor

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Ana-Maria Dumitru & Giovanni Urga, 2011. "Identifying Jumps in Financial Assets: A Comparison Between Nonparametric Jump Tests," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(2), pages 242-255, October.
  2. Giot, Pierre & Laurent, Sebastien, 2003. "Market risk in commodity markets: a VaR approach," Energy Economics, Elsevier, vol. 25(5), pages 435-457, September.
  3. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
  4. David Cabedo, J. & Moya, Ismael, 2003. "Estimating oil price 'Value at Risk' using the historical simulation approach," Energy Economics, Elsevier, vol. 25(3), pages 239-253, May.
  5. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, Elsevier.
  6. Arouri, Mohamed El Hédi & Lahiani, Amine & Lévy, Aldo & Nguyen, Duc Khuong, 2012. "Forecasting the conditional volatility of oil spot and futures prices with structural breaks and long memory models," Energy Economics, Elsevier, vol. 34(1), pages 283-293.
  7. Giot, Pierre & Laurent, Sebastien, 2004. "Modelling daily Value-at-Risk using realized volatility and ARCH type models," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 379-398, June.
  8. Andersen, Torben G. & Dobrev, Dobrislav & Schaumburg, Ernst, 2012. "Jump-robust volatility estimation using nearest neighbor truncation," Journal of Econometrics, Elsevier, vol. 169(1), pages 75-93.
  9. Tao Wang & Jingtao Wu & Jian Yang, 2008. "Realized volatility and correlation in energy futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 28(10), pages 993-1011, October.
  10. Corsi, Fulvio & Pirino, Davide & Renò, Roberto, 2010. "Threshold bipower variation and the impact of jumps on volatility forecasting," Journal of Econometrics, Elsevier, vol. 159(2), pages 276-288, December.
  11. Choobineh, F. & Branting, D., 1986. "A simple approximation for semivariance," European Journal of Operational Research, Elsevier, vol. 27(3), pages 364-370, December.
  12. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
  13. Ole E. Barndorff-Nielsen & Neil Shephard, 2006. "Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(1), pages 1-30.
  14. Martin Martens & Jason Zein, 2004. "Predicting financial volatility: High‐frequency time‐series forecasts vis‐à‐vis implied volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 24(11), pages 1005-1028, November.
  15. Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005. "Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
  16. Ole E. Barndorff-Nielsen, 2004. "Power and Bipower Variation with Stochastic Volatility and Jumps," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(1), pages 1-37.
  17. Maheu, John M. & McCurdy, Thomas H., 2011. "Do high-frequency measures of volatility improve forecasts of return distributions?," Journal of Econometrics, Elsevier, vol. 160(1), pages 69-76, January.
  18. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, Elsevier.
  19. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
  20. Christodoulakis, George A., 2007. "Common volatility and correlation clustering in asset returns," European Journal of Operational Research, Elsevier, vol. 182(3), pages 1263-1284, November.
  21. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
  22. Wei, Yu & Wang, Yudong & Huang, Dengshi, 2010. "Forecasting crude oil market volatility: Further evidence using GARCH-class models," Energy Economics, Elsevier, vol. 32(6), pages 1477-1484, November.
  23. Martin Martens, 2002. "Measuring and forecasting S&P 500 index‐futures volatility using high‐frequency data," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 22(6), pages 497-518, 06.
  24. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
  25. Torben G. Andersen & Luca Benzoni & Jesper Lund, 2002. "An Empirical Investigation of Continuous-Time Equity Return Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1239-1284, 06.
  26. Lars Stentoft, 2008. "Option Pricing using Realized Volatility," CREATES Research Papers 2008-13, Department of Economics and Business Economics, Aarhus University.
  27. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
  28. Chun Liu & John M. Maheu, 2009. "Forecasting realized volatility: a Bayesian model-averaging approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(5), pages 709-733.
  29. Andrew Ang & Joseph Chen & Yuhang Xing, 2006. "Downside Risk," Review of Financial Studies, Society for Financial Studies, vol. 19(4), pages 1191-1239.
    • Andrew Ang & Joseph Chen & Yuhang Xing, 2005. "Downside risk," Proceedings, Board of Governors of the Federal Reserve System (U.S.).
  30. Peter F. Christoffersen & Francis X. Diebold, 2000. "How Relevant is Volatility Forecasting for Financial Risk Management?," The Review of Economics and Statistics, MIT Press, vol. 82(1), pages 12-22, February.
  31. Bellini, Fabio & Figa-Talamanca, Gianna, 2005. "Runs tests for assessing volatility forecastability in financial time series," European Journal of Operational Research, Elsevier, vol. 163(1), pages 102-114, May.
  32. repec:taf:jnlbes:v:30:y:2012:i:2:p:242-255 is not listed on IDEAS
  33. Bjørn Eraker, 2004. "Do Stock Prices and Volatility Jump? Reconciling Evidence from Spot and Option Prices," Journal of Finance, American Finance Association, vol. 59(3), pages 1367-1404, 06.
  34. Huang, Xiaoxia, 2008. "Portfolio selection with a new definition of risk," European Journal of Operational Research, Elsevier, vol. 186(1), pages 351-357, April.
  35. West, Kenneth D., 2006. "Forecast Evaluation," Handbook of Economic Forecasting, Elsevier.
  36. repec:hal:journl:peer-00741630 is not listed on IDEAS
  37. Mohammadi, Hassan & Su, Lixian, 2010. "International evidence on crude oil price dynamics: Applications of ARIMA-GARCH models," Energy Economics, Elsevier, vol. 32(5), pages 1001-1008, September.
  38. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
  39. Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005. "A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
  40. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 33(1), pages 125-132.
  41. Becker Ralf & Clements Adam E & Hurn Stan, 2011. "Semi-Parametric Forecasting of Realized Volatility," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 15(3), pages 1-23, May.
  42. Elder, John & Serletis, Apostolos, 2008. "Long memory in energy futures prices," Review of Financial Economics, Elsevier, vol. 17(2), pages 146-155.
  43. Corsi, Fulvio & Fusari, Nicola & La Vecchia, Davide, 2013. "Realizing smiles: Options pricing with realized volatility," Journal of Financial Economics, Elsevier, vol. 107(2), pages 284-304.
  44. Taylor, Stephen J. & Xu, Xinzhong, 1997. "The incremental volatility information in one million foreign exchange quotations," Journal of Empirical Finance, Elsevier, vol. 4(4), pages 317-340, December.
  45. Fong, Wai Mun & See, Kim Hock, 2002. "A Markov switching model of the conditional volatility of crude oil futures prices," Energy Economics, Elsevier, vol. 24(1), pages 71-95, January.
  46. Richard T. Baillie & Young‐Wook Han & Robert J. Myers & Jeongseok Song, 2007. "Long memory models for daily and high frequency commodity futures returns," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 27(7), pages 643-668, 07.
  47. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
  48. Martens, Martin & van Dijk, Dick & de Pooter, Michiel, 2009. "Forecasting S&P 500 volatility: Long memory, level shifts, leverage effects, day-of-the-week seasonality, and macroeconomic announcements," International Journal of Forecasting, Elsevier, vol. 25(2), pages 282-303.
  49. Kang, Sang Hoon & Yoon, Seong-Min, 2013. "Modeling and forecasting the volatility of petroleum futures prices," Energy Economics, Elsevier, vol. 36(C), pages 354-362.
  50. Tseng Tseng-Chan & Chung Huimin & Huang Chin-Sheng, 2009. "Modeling Jump and Continuous Components in the Volatility of Oil Futures," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(3), pages 1-30, May.
  51. Tim Bollerslev & Jonathan H. Wright, 2001. "High-Frequency Data, Frequency Domain Inference, And Volatility Forecasting," The Review of Economics and Statistics, MIT Press, vol. 83(4), pages 596-602, November.
  52. Wang, Yudong & Wu, Chongfeng & Wei, Yu, 2011. "Can GARCH-class models capture long memory in WTI crude oil markets?," Economic Modelling, Elsevier, vol. 28(3), pages 921-927, May.
  53. Grootveld, Henk & Hallerbach, Winfried, 1999. "Variance vs downside risk: Is there really that much difference?," European Journal of Operational Research, Elsevier, vol. 114(2), pages 304-319, April.
  54. Jin-Chuan Duan, 1995. "The Garch Option Pricing Model," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 13-32.
  55. Jorion, Philippe, 1995. " Predicting Volatility in the Foreign Exchange Market," Journal of Finance, American Finance Association, vol. 50(2), pages 507-528, June.
  56. Marina Theodosiou & Filip Zikes, 2011. "A Comprehensive Comparison of Alternative Tests for Jumps in Asset Prices," Working Papers 2011-2, Central Bank of Cyprus.
  57. Xin Huang & George Tauchen, 2005. "The Relative Contribution of Jumps to Total Price Variance," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 3(4), pages 456-499.
  58. Perry Sadorsky & Michael D. McKenzie, 2008. "Power transformation models and volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(7), pages 587-606.
  59. Muller, Ulrich A. & Dacorogna, Michel M. & Dave, Rakhal D. & Olsen, Richard B. & Pictet, Olivier V. & von Weizsacker, Jacob E., 1997. "Volatilities of different time resolutions -- Analyzing the dynamics of market components," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 213-239, June.
  60. Duong, Huu Nhan & Kalev, Petko S., 2008. "The Samuelson hypothesis in futures markets: An analysis using intraday data," Journal of Banking & Finance, Elsevier, vol. 32(4), pages 489-500, April.
  61. Federico Bandi & Jeffrey Russell & Yinghua Zhu, 2008. "Using High-Frequency Data in Dynamic Portfolio Choice," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 163-198.
  62. Bandi, Federico M. & Russell, Jeffrey R. & Yang, Chen, 2008. "Realized volatility forecasting and option pricing," Journal of Econometrics, Elsevier, vol. 147(1), pages 34-46, November.
  63. Andersen, Torben G. & Bollerslev, Tim & Meddahi, Nour, 2011. "Realized volatility forecasting and market microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 220-234, January.
  64. Andersen, Torben G. & Bollerslev, Tim, 1997. "Intraday periodicity and volatility persistence in financial markets," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 115-158, June.
  65. Sadorsky, Perry, 2006. "Modeling and forecasting petroleum futures volatility," Energy Economics, Elsevier, vol. 28(4), pages 467-488, July.
  66. Clements, Michael P. & Galvão, Ana Beatriz & Kim, Jae H., 2008. "Quantile forecasts of daily exchange rate returns from forecasts of realized volatility," Journal of Empirical Finance, Elsevier, vol. 15(4), pages 729-750, September.
  67. Chevallier, Julien & Sévi, Benoît, 2012. "On the volatility–volume relationship in energy futures markets using intraday data," Energy Economics, Elsevier, vol. 34(6), pages 1896-1909.
  68. Kim, Myung Suk, 2013. "Modeling special-day effects for forecasting intraday electricity demand," European Journal of Operational Research, Elsevier, vol. 230(1), pages 170-180.
  69. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
  70. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 7(2), pages 174-196, Spring.
  71. Xilong Chen & Eric Ghysels, 2011. "News--Good or Bad--and Its Impact on Volatility Predictions over Multiple Horizons," Review of Financial Studies, Society for Financial Studies, vol. 24(1), pages 46-81, October.
  72. Josephy, Norman H. & Aczel, Amir D., 1993. "A statistically optimal estimator of semivariance," European Journal of Operational Research, Elsevier, vol. 67(2), pages 267-271, June.
  73. Zhiyao Chen & Robert T. Daigler & Ali M. Parhizgari, 2006. "Persistence of volatility in futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 26(6), pages 571-594, 06.
  74. Petko S. Kalev & Huu Nhan Duong, 2008. "A test of the Samuelson Hypothesis using realized range," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 28(7), pages 680-696, 07.
  75. Richard T. Baillie & Young-Wook Han & Robert J. Myers & Jeongseok Song, 2007. "Long Memory and FIGARCH Models for Daily and High Frequency Commodity Prices," Working Papers 594, Queen Mary University of London, School of Economics and Finance.
  76. Agnolucci, Paolo, 2009. "Volatility in crude oil futures: A comparison of the predictive ability of GARCH and implied volatility models," Energy Economics, Elsevier, vol. 31(2), pages 316-321, March.
  77. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
  78. Chernov, Mikhail & Ronald Gallant, A. & Ghysels, Eric & Tauchen, George, 2003. "Alternative models for stock price dynamics," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 225-257.
  79. Hansen, Peter R. & Lunde, Asger, 2006. "Realized Variance and Market Microstructure Noise," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 127-161, April.
  80. Nomikos, Nikos & Andriosopoulos, Kostas, 2012. "Modelling energy spot prices: Empirical evidence from NYMEX," Energy Economics, Elsevier, vol. 34(4), pages 1153-1169.
  81. Helyette Geman, 2005. "Commodities and Commodity Derivatives. Modeling and Pricing for Agriculturals, Metals and Energy," Post-Print halshs-00144182, HAL.
  82. Christensen, B. J. & Prabhala, N. R., 1998. "The relation between implied and realized volatility," Journal of Financial Economics, Elsevier, vol. 50(2), pages 125-150, November.
  83. Pierre Giot & Sébastien Laurent, 2007. "The information content of implied volatility in light of the jump/continuous decomposition of realized volatility," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 27(4), pages 337-359, 04.
  84. Heston, Steven L & Nandi, Saikat, 2000. "A Closed-Form GARCH Option Valuation Model," Review of Financial Studies, Society for Financial Studies, vol. 13(3), pages 585-625.
  85. Tauchen, George & Zhou, Hao, 2011. "Realized jumps on financial markets and predicting credit spreads," Journal of Econometrics, Elsevier, vol. 160(1), pages 102-118, January.
  86. Christodoulakis, George A. & Satchell, Stephen E., 2002. "Correlated ARCH (CorrARCH): Modelling the time-varying conditional correlation between financial asset returns," European Journal of Operational Research, Elsevier, vol. 139(2), pages 351-370, June.
  87. Nomikos, Nikos K. & Pouliasis, Panos K., 2011. "Forecasting petroleum futures markets volatility: The role of regimes and market conditions," Energy Economics, Elsevier, vol. 33(2), pages 321-337, March.
  88. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
  89. Fleming, Jeff & Kirby, Chris & Ostdiek, Barbara, 2003. "The economic value of volatility timing using "realized" volatility," Journal of Financial Economics, Elsevier, vol. 67(3), pages 473-509, March.
  90. Liu, Li & Wan, Jieqiu, 2012. "A study of Shanghai fuel oil futures price volatility based on high frequency data: Long-range dependence, modeling and forecasting," Economic Modelling, Elsevier, vol. 29(6), pages 2245-2253.
  91. Hua, Zhongsheng & Zhang, Bin, 2008. "Improving density forecast by modeling asymmetric features: An application to S&P500 returns," European Journal of Operational Research, Elsevier, vol. 185(2), pages 716-725, March.
  92. Wong, Hoi Ying & Lo, Yu Wai, 2009. "Option pricing with mean reversion and stochastic volatility," European Journal of Operational Research, Elsevier, vol. 197(1), pages 179-187, August.
  93. repec:dau:papers:123456789/607 is not listed on IDEAS
  94. repec:dau:papers:123456789/6887 is not listed on IDEAS
  95. Kang, Sang Hoon & Kang, Sang-Mok & Yoon, Seong-Min, 2009. "Forecasting volatility of crude oil markets," Energy Economics, Elsevier, vol. 31(1), pages 119-125, January.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:235:y:2014:i:3:p:643-659. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.