IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

High frequency data, frequency domain inference and volatility forecasting

  • Jonathan H. Wright
  • Tim Bollerslev

While it is clear that the volatility of asset returns is serially correlated, there is no general agreement as to the most appropriate parametric model for characterizing this temporal dependence. In this paper, we propose a simple way of modeling financial market volatility using high frequency data. The method avoids using a tight parametric model, by instead simply fitting a long autoregression to log-squared, squared or absolute high frequency returns. This can either be estimated by the usual time domain method, or alternatively the autoregressive coefficients can be backed out from the smoothed periodogram estimate of the spectrum of log-squared, squared or absolute returns. We show how this approach can be used to construct volatility forecasts, which compare favorably with some leading alternatives in an out-of-sample forecasting exercise.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

File URL:
Download Restriction: no

Paper provided by Board of Governors of the Federal Reserve System (U.S.) in its series International Finance Discussion Papers with number 649.

in new window

Date of creation: 1999
Date of revision:
Handle: RePEc:fip:fedgif:649
Contact details of provider: Postal: 20th Street and Constitution Avenue, NW, Washington, DC 20551
Web page:

More information through EDIRC

Order Information: Web:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
  2. Diebold & Lopez, . "Modeling Volatility Dynamics," Home Pages _062, University of Pennsylvania.
  3. Breidt, F. Jay & Crato, Nuno & de Lima, Pedro, 1998. "The detection and estimation of long memory in stochastic volatility," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 325-348.
  4. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
  5. Jorion, Philippe, 1995. " Predicting Volatility in the Foreign Exchange Market," Journal of Finance, American Finance Association, vol. 50(2), pages 507-28, June.
  6. Muller, Ulrich A. & Dacorogna, Michel M. & Olsen, Richard B. & Pictet, Olivier V. & Schwarz, Matthias & Morgenegg, Claude, 1990. "Statistical study of foreign exchange rates, empirical evidence of a price change scaling law, and intraday analysis," Journal of Banking & Finance, Elsevier, vol. 14(6), pages 1189-1208, December.
  7. Andersen, Torben G. & Bollerslev, Tim, 1997. "Intraday periodicity and volatility persistence in financial markets," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 115-158, June.
  8. Gallant, A Ronald & Rossi, Peter E & Tauchen, George, 1992. "Stock Prices and Volume," Review of Financial Studies, Society for Financial Studies, vol. 5(2), pages 199-242.
  9. Bollerslev, Tim & Engle, Robert F. & Nelson, Daniel B., 1986. "Arch models," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 49, pages 2959-3038 Elsevier.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:fip:fedgif:649. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Kris Vajs)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.