IDEAS home Printed from https://ideas.repec.org/p/msh/ebswps/2004-4.html
   My bibliography  Save this paper

Bivariate error correction FIGARCH and FIAPARCH models on the Australian All Ordinaries Index and its SPI futures

Author

Listed:
  • Jonathan Dark

Abstract

In this paper we extend the univariate FIGARCH and FIAPARCH models to a bivariate framework. We estimate bivariate error correction FIGARCH and FIAPARCH models between the All Ordinaries Index and its SPI futures using constant correlation and diagonal parameterisations. We therefore employ a flexible estimation approach that captures the long run equilibrium relationship between the two markets, bi-directional return causality, long memory and asymmetries in volatility, and time varying correlations. The results strongly support the use of this approach. Strong bi-directional return causality exists with the index bearing the burden of adjustment to deviations from long run equilibrium. The results also illustrate the importance of allowing for long memory, asymmetries in volatility, and time varying correlations.

Suggested Citation

  • Jonathan Dark, 2004. "Bivariate error correction FIGARCH and FIAPARCH models on the Australian All Ordinaries Index and its SPI futures," Monash Econometrics and Business Statistics Working Papers 4/04, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:2004-4
    as

    Download full text from publisher

    File URL: http://www.buseco.monash.edu.au/ebs/pubs/wpapers/2004/wp4-04.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liudas Giraitis & Piotr Kokoszka & Remigijus Leipus & Gilles Teyssière, 2000. "Semiparametric Estimation of the Intensity of Long Memory in Conditional Heteroskedasticity," Statistical Inference for Stochastic Processes, Springer, vol. 3(1), pages 113-128, January.
    2. Brunetti, Celso & Gilbert, Christopher L., 2000. "Bivariate FIGARCH and fractional cointegration," Journal of Empirical Finance, Elsevier, vol. 7(5), pages 509-530, December.
    3. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
    4. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
    5. Kirman Alan & Teyssière Gilles, 2002. "Microeconomic Models for Long Memory in the Volatility of Financial Time Series," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 5(4), pages 1-23, January.
    6. Andersen, Torben G & Bollerslev, Tim, 1997. "Heterogeneous Information Arrivals and Return Volatility Dynamics: Uncovering the Long-Run in High Frequency Returns," Journal of Finance, American Finance Association, vol. 52(3), pages 975-1005, July.
    7. Granger, Clive W. J. & Ding, Zhuanxin, 1996. "Varieties of long memory models," Journal of Econometrics, Elsevier, vol. 73(1), pages 61-77, July.
    8. Hyung, Namwon & Franses, Philip Hans & Penm, Jack, 2006. "Structural breaks and long memory in US inflation rates: Do they matter for forecasting?," Research in International Business and Finance, Elsevier, vol. 20(1), pages 95-110, March.
    9. Andersen, Torben G. & Bollerslev, Tim, 1997. "Intraday periodicity and volatility persistence in financial markets," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 115-158, June.
    10. Engle, Robert F & Sheppard, Kevin K, 2001. "Theoretical and Empirical Properties of Dynamic Conditional Correlation Multivariate GARCH," University of California at San Diego, Economics Working Paper Series qt5s2218dp, Department of Economics, UC San Diego.
    11. Brennan, Michael J & Schwartz, Eduardo S, 1990. "Arbitrage in Stock Index Futures," The Journal of Business, University of Chicago Press, vol. 63(1), pages 7-31, January.
    12. Engle, Robert F & Ng, Victor K, 1993. "Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    13. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    14. Alex Frino & Terry Walter & Andrew West, 2000. "The lead–lag relationship between equities and stock index futures markets around information releases," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 20(5), pages 467-487, May.
    15. KIRMAN, Alan & TEYSSIÈRE, Gilles, 2002. "Bubbles and long-range dependence in asset prices volatilities," LIDAM Discussion Papers CORE 2002060, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    16. Bollerslev, Tim & Engle, Robert F & Wooldridge, Jeffrey M, 1988. "A Capital Asset Pricing Model with Time-Varying Covariances," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 116-131, February.
    17. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    18. Gregory, Allan W & Hansen, Bruce E, 1996. "Tests for Cointegration in Models with Regime and Trend Shifts," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 58(3), pages 555-560, August.
    19. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    20. Breidt, F. Jay & Crato, Nuno & de Lima, Pedro, 1998. "The detection and estimation of long memory in stochastic volatility," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 325-348.
    21. Ding, Zhuanxin & Granger, Clive W. J., 1996. "Modeling volatility persistence of speculative returns: A new approach," Journal of Econometrics, Elsevier, vol. 73(1), pages 185-215, July.
    22. Gregory, Allan W. & Hansen, Bruce E., 1996. "Residual-based tests for cointegration in models with regime shifts," Journal of Econometrics, Elsevier, vol. 70(1), pages 99-126, January.
    23. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    24. Granger, Clive W.J. & Hyung, Namwon, 1999. "Occasional Structural Breaks and Long Memory," University of California at San Diego, Economics Working Paper Series qt4d60t4jh, Department of Economics, UC San Diego.
    25. Breidt, F. Jay & Hsu, Nan-Jung, 2002. "A class of nearly long-memory time series models," International Journal of Forecasting, Elsevier, vol. 18(2), pages 265-281.
    26. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    27. repec:bla:jfinan:v:53:y:1998:i:1:p:219-265 is not listed on IDEAS
    28. Engle, Robert F & Gonzalez-Rivera, Gloria, 1991. "Semiparametric ARCH Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(4), pages 345-359, October.
    29. Kawaller, Ira G & Koch, Paul D & Koch, Timothy W, 1987. "The Temporal Price Relationship between S&P 500 Futures and the S and P 500 Index," Journal of Finance, American Finance Association, vol. 42(5), pages 1309-1329, December.
    30. Clive W.J. Granger & Namwon Hyung, 2013. "Occasional Structural Breaks and Long Memory," Annals of Economics and Finance, Society for AEF, vol. 14(2), pages 739-764, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Conrad, Christian & Karanasos, Menelaos & Zeng, Ning, 2011. "Multivariate fractionally integrated APARCH modeling of stock market volatility: A multi-country study," Journal of Empirical Finance, Elsevier, vol. 18(1), pages 147-159, January.
    2. repec:awi:wpaper:0472 is not listed on IDEAS
    3. Chaker Aloui, 2011. "Latin American stock markets’ volatility spillovers during the financial crises: a multivariate FIAPARCH-DCC framework," Macroeconomics and Finance in Emerging Market Economies, Taylor & Francis Journals, vol. 4(2), pages 289-326, May.
    4. Cuong Nguyen & M. Bhatti & Aziz Hayat, 2014. "Volatility linkages in the spot and futures market in Australia: a copula approach," Quality & Quantity: International Journal of Methodology, Springer, vol. 48(5), pages 2589-2603, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonathan Dark, 2004. "Long memory in the volatility of the Australian All Ordinaries Index and the Share Price Index futures," Monash Econometrics and Business Statistics Working Papers 5/04, Monash University, Department of Econometrics and Business Statistics.
    2. Jonathan Dark, 2004. "Long term hedging of the Australian All Ordinaries Index using a bivariate error correction FIGARCH model," Monash Econometrics and Business Statistics Working Papers 7/04, Monash University, Department of Econometrics and Business Statistics.
    3. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    4. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    5. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    6. Dominique Guegan, 2005. "How can we Define the Concept of Long Memory? An Econometric Survey," Econometric Reviews, Taylor & Francis Journals, vol. 24(2), pages 113-149.
    7. David McMillan & Alan Speight, 2006. "Heterogeneous information flows and intra-day volatility dynamics: evidence from the UK FTSE-100 stock index futures market," Applied Financial Economics, Taylor & Francis Journals, vol. 16(13), pages 959-972.
    8. John Cotter & Simon Stevenson, 2008. "Modeling Long Memory in REITs," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 36(3), pages 533-554, September.
    9. Abderrazak Ben Maatoug & Rim Lamouchi & Russell Davidson & Ibrahim Fatnassi, 2018. "Modelling Foreign Exchange Realized Volatility Using High Frequency Data: Long Memory versus Structural Breaks," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 10(1), pages 1-25, March.
    10. repec:awi:wpaper:0472 is not listed on IDEAS
    11. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, September.
    12. Maheu John, 2005. "Can GARCH Models Capture Long-Range Dependence?," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(4), pages 1-43, December.
    13. Kin-Yip Ho & Ka Cheng Tsui, 2004. "Volatility Dynamics of the Tokyo Stock Exchange: A Sectoral Analysis based on the Multivariate GARCH Approach," Money Macro and Finance (MMF) Research Group Conference 2004 12, Money Macro and Finance Research Group.
    14. Morana, Claudio & Beltratti, Andrea, 2004. "Structural change and long-range dependence in volatility of exchange rates: either, neither or both?," Journal of Empirical Finance, Elsevier, vol. 11(5), pages 629-658, December.
    15. Pedro J. F. de Lima & Michelle L. Barnes, 2000. "Modeling Financial Volatility: Extreme Observations, Nonlinearities and Nonstationarities," School of Economics and Public Policy Working Papers 2000-05, University of Adelaide, School of Economics and Public Policy.
    16. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    17. Ana Pérez & Esther Ruiz, 2002. "Modelos de memoria larga para series económicas y financieras," Investigaciones Economicas, Fundación SEPI, vol. 26(3), pages 395-445, September.
    18. Thomas Mikosch, 2004. "Is it really long memory we see in financial returns?," Econometrics 0412002, University Library of Munich, Germany.
    19. da Silva, Afonso Gonçalves & Robinson, Peter M., 2008. "Fractional Cointegration In Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 24(5), pages 1207-1253, October.
    20. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2003. "Some Like it Smooth, and Some Like it Rough: Untangling Continuous and Jump Components in Measuring, Modeling, and Forecasting Asset Return Volatility," PIER Working Paper Archive 03-025, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 01 Sep 2003.
    21. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.

    More about this item

    Keywords

    long memory; univariate and bivariate FIGARCH and FIAPARCH; asymmetries in volatility.;
    All these keywords.

    JEL classification:

    • G0 - Financial Economics - - General
    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2004-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Professor Xibin Zhang (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.