IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Microeconomic Models for Long Memory in the Volatility of Financial Time Series

  • Kirman Alan

    (Institut Universitaire de France & GREQAM)

  • Teyssière Gilles

    (GREQAM & CORE)

We show that a class of microeconomic behavioral models with interacting agents, derived from Kirman (1991) and Kirman (1993), can replicate the empirical long-memory properties of the two first-conditional moments of financial time series. The essence of these models is that the forecasts and thus the desired trades of the individuals in the markets are influenced, directly or indirectly, by those of the other participants. These "field effects" generate "herding" behavior that affects the structure of the asset price dynamics. The series of returns generated by these models display the same empirical properties as financial returns: returns are I (0), the series of absolute and squared returns display strong dependence, and the series of absolute returns do not display a trend. Furthermore, this class of models is able to replicate the common long-memory properties in the volatility and covolatility of financial time series revealed by Teyssière (1997, 1998a). These properties are investigated by using various model-independent tests and estimators, that is, semiparametric and nonparametric, introduced by Lo (1991), Kwiatkowski et al. (1992), Robinson (1995), Lobato and Robinson (1998), and Giraitis et al. (2000, forthcoming). The relative performance of these tests and estimators for long memory in a nonstandard data-generating process is then assessed.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.degruyter.com/view/j/snde.2002.5.4/snde.2002.5.4.1083/snde.2002.5.4.1083.xml?format=INT
Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by De Gruyter in its journal Studies in Nonlinear Dynamics & Econometrics.

Volume (Year): 5 (2002)
Issue (Month): 4 (January)
Pages: 1-23

as
in new window

Handle: RePEc:bpj:sndecm:v:5:y:2002:i:4:n:3
Contact details of provider: Web page: http://www.degruyter.com

Order Information: Web: http://www.degruyter.com/view/j/snde

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:bpj:sndecm:v:5:y:2002:i:4:n:3. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Peter Golla)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.