IDEAS home Printed from https://ideas.repec.org/a/bla/manch2/v66y1998i1p1-26.html
   My bibliography  Save this article

Graphical Methods for Investigating the Size and Power of Hypothesis Tests

Author

Listed:
  • Davidson, Russell
  • MacKinnon, James G

Abstract

Simple techniques for the graphical display of simulation evidence concerning the size and power of hypothesis tests are developed and illustrated. Three types of figures--called P value plots, P value discrepancy plots, and size-power curves--are discussed. Some Monte Carlo experiments on the properties of alternative forms of the information matrix test for linear regression models and probit models are used to illustrate these figures. Tests based on the outer-product-of-the-gradient regression generally perform much worse in terms of both size and power than efficient score tests. Copyright 1998 by Blackwell Publishers Ltd and The Victoria University of Manchester

Suggested Citation

  • Davidson, Russell & MacKinnon, James G, 1998. "Graphical Methods for Investigating the Size and Power of Hypothesis Tests," The Manchester School of Economic & Social Studies, University of Manchester, vol. 66(1), pages 1-26, January.
  • Handle: RePEc:bla:manch2:v:66:y:1998:i:1:p:1-26
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Davidson, Russell & MacKinnon, James G, 1984. "Model Specification Tests Based on Artificial Linear Regressions," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 25(2), pages 485-502, June.
    2. James G. MacKinnon & Russell Davidson, 1996. "The Size And Power Of Bootstrap Tests," Working Paper 932, Economics Department, Queen's University.
    3. Taylor, Larry W., 1987. "The size bias of White's information matrix test," Economics Letters, Elsevier, vol. 24(1), pages 63-67.
    4. Lancaster, Tony, 1984. "The Covariance Matrix of the Information Matrix Test," Econometrica, Econometric Society, vol. 52(4), pages 1051-1053, July.
    5. Davidson, Russell & MacKinnon, James G., 1993. "Estimation and Inference in Econometrics," OUP Catalogue, Oxford University Press, number 9780195060119, April.
    6. Horowitz, Joel L., 1994. "Bootstrap-based critical values for the information matrix test," Journal of Econometrics, Elsevier, vol. 61(2), pages 395-411, April.
    7. West, Kenneth D & Wilcox, David W, 1996. "A Comparison of Alternative Instrumental Variables Estimators of a Dynamic Linear Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 281-293, July.
    8. Chesher, Andrew, 1983. "The information matrix test : Simplified calculation via a score test interpretation," Economics Letters, Elsevier, vol. 13(1), pages 45-48.
    9. Hendry, David F., 1984. "Monte carlo experimentation in econometrics," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 16, pages 937-976, Elsevier.
    10. Davidson, Russell & MacKinnon, James G, 1992. "A New Form of the Information Matrix Test," Econometrica, Econometric Society, vol. 60(1), pages 145-157, January.
    11. Fischer, N. I. & Mammen, E. & Marron, J. S., 1994. "Testing for multimodality," Computational Statistics & Data Analysis, Elsevier, vol. 18(5), pages 499-512, December.
    12. Orme, Christopher, 1988. "The Calculation of the Information Matrix Test for Binary Data Models," The Manchester School of Economic & Social Studies, University of Manchester, vol. 56(4), pages 370-376, December.
    13. Davidson, Russell & MacKinnon, James G., 1996. "The Power of Bootstrap Tests," Queen's Institute for Economic Research Discussion Papers 273372, Queen's University - Department of Economics.
    14. Alastair Hall, 1987. "The Information Matrix Test for the Linear Model," Review of Economic Studies, Oxford University Press, vol. 54(2), pages 257-263.
    15. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    16. Chesher, Andrew & Spady, Richard, 1991. "Asymptotic Expansions of the Information Matrix Test Statistic," Econometrica, Econometric Society, vol. 59(3), pages 787-815, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dhaene, Geert & Hoorelbeke, Dirk, 2004. "The information matrix test with bootstrap-based covariance matrix estimation," Economics Letters, Elsevier, vol. 82(3), pages 341-347, March.
    2. King, Maxwell L. & Zhang, Xibin & Akram, Muhammad, 2020. "Hypothesis testing based on a vector of statistics," Journal of Econometrics, Elsevier, vol. 219(2), pages 425-455.
    3. Riccardo Lucchetti & Claudia Pigini, 2013. "A test for bivariate normality with applications in microeconometric models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(4), pages 535-572, November.
    4. Stomberg, Christopher & White, Halbert, 2000. "Bootstrapping the Information Matrix Test," University of California at San Diego, Economics Working Paper Series qt158451cr, Department of Economics, UC San Diego.
    5. Wanling Huang & Artem Prokhorov, 2014. "A Goodness-of-fit Test for Copulas," Econometric Reviews, Taylor & Francis Journals, vol. 33(7), pages 751-771, October.
    6. Davidson, Russell & MacKinnon, James G., 1989. "Testing for Consistency using Artificial Regressions," Econometric Theory, Cambridge University Press, vol. 5(3), pages 363-384, December.
    7. Davidson, R. & MacKinnon & J.G., 1999. "Artificial Regressions," G.R.E.Q.A.M. 99a04, Universite Aix-Marseille III.
    8. Dirk Hoorelbeke, 2004. "Bootstrap correcting the score test," Econometric Society 2004 North American Summer Meetings 228, Econometric Society.
    9. MacKinnon, James G, 1992. "Model Specification Tests and Artificial Regressions," Journal of Economic Literature, American Economic Association, vol. 30(1), pages 102-146, March.
    10. repec:ebl:ecbull:v:3:y:2008:i:5:p:1-7 is not listed on IDEAS
    11. Choi, Hwan-sik, 2016. "Information theory for maximum likelihood estimation of diffusion models," Journal of Econometrics, Elsevier, vol. 191(1), pages 110-128.
    12. Li, Yong & Yu, Jun & Zeng, Tao, 2018. "Specification tests based on MCMC output," Journal of Econometrics, Elsevier, vol. 207(1), pages 237-260.
    13. Jin Seo Cho & Peter C.B. Phillips, "undated". "Testing Equality of Covariance Matrices via Pythagorean Means," Cowles Foundation Discussion Papers 1970, Cowles Foundation for Research in Economics, Yale University.
    14. Maxwell L. King & Xibin Zhang & Muhammad Akram, 2011. "A New Procedure For Multiple Testing Of Econometric Models," Monash Econometrics and Business Statistics Working Papers 7/11, Monash University, Department of Econometrics and Business Statistics.
    15. Cho, Jin Seo & Phillips, Peter C.B., 2018. "Pythagorean generalization of testing the equality of two symmetric positive definite matrices," Journal of Econometrics, Elsevier, vol. 202(1), pages 45-56.
    16. K. Chua & S. Ong, 2013. "Test of misspecification with application to negative binomial distribution," Computational Statistics, Springer, vol. 28(3), pages 993-1009, June.
    17. Christian de Peretti, 2003. "Bilateral Bootstrap Tests for Long Memory: An Application to the Silver Market," Computational Economics, Springer;Society for Computational Economics, vol. 22(2), pages 187-212, October.
    18. Joachim Zietz, 2006. "Detecting neglected parameter heterogeneity with Chow tests," Applied Economics Letters, Taylor & Francis Journals, vol. 13(6), pages 369-374.
    19. Bontemps, Christian & Meddahi, Nour, 2005. "Testing normality: a GMM approach," Journal of Econometrics, Elsevier, vol. 124(1), pages 149-186, January.
    20. Chesher, Andrew & Dhaene, Geert & Gouriéroux, Christian & Scaillet, Olivier, 1999. "Bartlett Identities Tests," LIDAM Discussion Papers IRES 1999019, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
    21. Francisco Cribari-Neto, 1996. "On the Corrections to Information Matrix Tests," Econometrics 9601001, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:manch2:v:66:y:1998:i:1:p:1-26. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/semanuk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/semanuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.