IDEAS home Printed from https://ideas.repec.org/p/msh/ebswps/2019-30.html

Hypothesis Testing Based on a Vector of Statistics

Author

Listed:
  • Maxwell King

  • Xibin Zhang

  • Muhammad Akram

Abstract

This paper presents a new approach to hypothesis testing based on a vector of statistics. It involves simulating the statistics under the null hypothesis and then estimating the joint density of the statistics. This allows the p-value of the smallest acceptance region test to be estimated. We prove this p-value is a consistent estimate under some regularity conditions. The small-sample properties of the proposed procedure are investigated in the context of testing for autocorrelation, testing for normality, and testing for model misspecification through the information matrix. We find that our testing procedure has appropriate sizes and good powers.

Suggested Citation

  • Maxwell King & Xibin Zhang & Muhammad Akram, 2019. "Hypothesis Testing Based on a Vector of Statistics," Monash Econometrics and Business Statistics Working Papers 30/19, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:2019-30
    as

    Download full text from publisher

    File URL: https://www.monash.edu/business/ebs/research/publications/ebs/wp30-2019.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. is not listed on IDEAS
    2. Lena S. Bjerkander & Jonas Dovern & Hans Manner, 2024. "Testing with Vectors of Statistics: Revisiting Combined Hypothesis Tests with an Application to Specification Testing," CESifo Working Paper Series 11027, CESifo.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2019-30. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Professor Xibin Zhang (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.