IDEAS home Printed from https://ideas.repec.org/e/pzh72.html
   My authors  Follow this author

Xibin Zhang

Personal Details

First Name:Xibin
Middle Name:
Last Name:Zhang
Suffix:
RePEc Short-ID:pzh72
http://users.monash.edu.au/~xzhang/
Department of Econometrics and Business Statistics, Monash University, 900 Dandenong Road, Caulfield East, VIC 3145, Australia
+61 3 99032130

Affiliation

Department of Econometrics and Business Statistics
Monash Business School
Monash University

Melbourne, Australia
http://business.monash.edu/econometrics-and-business-statistics

: 03 990 52372
03 990 55474
Room 674, Menzies Building, Wellington Road, Clayton, Victoria, 3168
RePEc:edi:dxmonau (more details at EDIRC)

Research output

as
Jump to: Working papers Articles

Working papers

  1. Tingting Cheng & Jiti Gao & Xibin Zhang, 2015. "Bayesian Bandwidth Estimation In Nonparametric Time-Varying Coefficient Models," Monash Econometrics and Business Statistics Working Papers 3/15, Monash University, Department of Econometrics and Business Statistics.
  2. Tingting Cheng & Jiti Gao & Xibin Zhang, 2014. "Semiparametric Localized Bandwidth Selection for Kernel Density Estimation," Monash Econometrics and Business Statistics Working Papers 27/14, Monash University, Department of Econometrics and Business Statistics.
  3. Julia Polak & Maxwell L. King & Xibin Zhang, 2014. "A Model Validation Procedure," Monash Econometrics and Business Statistics Working Papers 21/14, Monash University, Department of Econometrics and Business Statistics.
  4. Haotian Chen & Xibin Zhang, 2014. "Bayesian Estimation for Partially Linear Models with an Application to Household Gasoline Consumption," Monash Econometrics and Business Statistics Working Papers 28/14, Monash University, Department of Econometrics and Business Statistics.
  5. Xibin Zhang & Maxwell L. King, 2013. "Gaussian kernel GARCH models," Monash Econometrics and Business Statistics Working Papers 19/13, Monash University, Department of Econometrics and Business Statistics.
  6. Xibin Zhang & Maxwell L. King & Han Lin Shang, 2013. "A sampling algorithm for bandwidth estimation in a nonparametric regression model with a flexible error density," Monash Econometrics and Business Statistics Working Papers 20/13, Monash University, Department of Econometrics and Business Statistics.
  7. Xibin Zhang & Maxwell L. King & Han Lin Shang, 2013. "Bayesian bandwidth selection for a nonparametric regession model with mixed types of regressors," Monash Econometrics and Business Statistics Working Papers 13/13, Monash University, Department of Econometrics and Business Statistics.
  8. Song Li & Mervyn J. Silvapulle & Param Silvapulle & Xibin Zhang, 2012. "Bayesian Approaches to Non-parametric Estimation of Densities on the Unit Interval," Monash Econometrics and Business Statistics Working Papers 3/12, Monash University, Department of Econometrics and Business Statistics.
  9. Xibin Zhang & Maxwell L. King, 2011. "Bayesian semiparametric GARCH models," Monash Econometrics and Business Statistics Working Papers 24/11, Monash University, Department of Econometrics and Business Statistics.
  10. Maxwell L. King & Xibin Zhang & Muhammad Akram, 2011. "A New Procedure For Multiple Testing Of Econometric Models," Monash Econometrics and Business Statistics Working Papers 7/11, Monash University, Department of Econometrics and Business Statistics.
  11. Xibin Zhang & Maxwell L. King & Han Lin Shang, 2011. "Bayesian estimation of bandwidths for a nonparametric regression model with a flexible error density," Monash Econometrics and Business Statistics Working Papers 10/11, Monash University, Department of Econometrics and Business Statistics.
  12. Qing Liu & David Pitt & Xibin Zhang & Xueyuan Wu, 2010. "A Bayesian approach to parameter estimation for kernel density estimation via transformations," Monash Econometrics and Business Statistics Working Papers 18/10, Monash University, Department of Econometrics and Business Statistics.
  13. Shuowen Hu & D.S. Poskitt & Xibin Zhang, 2010. "Bayesian Adaptive Bandwidth Kernel Density Estimation of Irregular Multivariate Distributions," Monash Econometrics and Business Statistics Working Papers 21/10, Monash University, Department of Econometrics and Business Statistics.
  14. Xibin Zhang & Robert D. Brooks & Maxwell L. King, 2007. "A Bayesian approach to bandwidth selection for multivariate kernel regression with an application to state-price density estimation," Monash Econometrics and Business Statistics Working Papers 11/07, Monash University, Department of Econometrics and Business Statistics.
  15. Param Silvapulle & Xibin Zhang, 2006. "Assessing Dependence Changes in the Asian Financial Market Returns Using Plots Based on Nonparametric Measures," Monash Econometrics and Business Statistics Working Papers 9/06, Monash University, Department of Econometrics and Business Statistics.
  16. Xibin Zhang & Maxwell L. King & Rob J. Hyndman, 2004. "Bandwidth Selection for Multivariate Kernel Density Estimation Using MCMC," Monash Econometrics and Business Statistics Working Papers 9/04, Monash University, Department of Econometrics and Business Statistics.
  17. Xibin Zhang & Maxwell L. King, 2004. "Box-Cox Stochastic Volatility Models with Heavy-Tails and Correlated Errors," Monash Econometrics and Business Statistics Working Papers 26/04, Monash University, Department of Econometrics and Business Statistics.
  18. Y.K. Tse & Xibin Zhang, 2003. "A Monte Carlo Investigation of Some Tests for Stochastic Dominance," Monash Econometrics and Business Statistics Working Papers 7/03, Monash University, Department of Econometrics and Business Statistics.
  19. Xibin Zhang & Maxwell L. King, 2003. "Estimation of Asymmetric Box-Cox Stochastic Volatility Models Using MCMC Simulation," Monash Econometrics and Business Statistics Working Papers 10/03, Monash University, Department of Econometrics and Business Statistics.
  20. Y.K. Tse & Xibin Zhang & Jun Yu, 2002. "Estimation of Hyperbolic Diffusion Using MCMC Method," Monash Econometrics and Business Statistics Working Papers 18/02, Monash University, Department of Econometrics and Business Statistics.
  21. Xibin Zhang & Maxwell L. King, 2002. "Influence Diagnostics in GARCH Processes," Monash Econometrics and Business Statistics Working Papers 19/02, Monash University, Department of Econometrics and Business Statistics.
  22. Jun Yu & Zhenlin Yang & Xibin Zhang, 2002. "A Class of Nonlinear Stochastic Volatility Models and Its Implications on Pricing Currency Options," Monash Econometrics and Business Statistics Working Papers 17/02, Monash University, Department of Econometrics and Business Statistics.

Articles

  1. Zhang, Rong & Inder, Brett A. & Zhang, Xibin, 2015. "Bayesian estimation of a discrete response model with double rules of sample selection," Computational Statistics & Data Analysis, Elsevier, vol. 86(C), pages 81-96.
  2. Song Li & Mervyn J. Silvapulle & Param Silvapulle & Xibin Zhang, 2015. "Bayesian Approaches to Nonparametric Estimation of Densities on the Unit Interval," Econometric Reviews, Taylor & Francis Journals, vol. 34(3), pages 394-412, March.
  3. Li, Han & O’Hare, Colin & Zhang, Xibin, 2015. "A semiparametric panel approach to mortality modeling," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 264-270.
  4. Zhang, Xibin & King, Maxwell L. & Shang, Han Lin, 2014. "A sampling algorithm for bandwidth estimation in a nonparametric regression model with a flexible error density," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 218-234.
  5. Hu, Shuowen & Poskitt, D.S. & Zhang, Xibin, 2012. "Bayesian adaptive bandwidth kernel density estimation of irregular multivariate distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 732-740.
  6. Jonathan Dark & Xibin Zhang & Nan Qu, 2010. "Influence diagnostics for multivariate GARCH processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(4), pages 278-291, July.
  7. Zhang, Xibin & Brooks, Robert D. & King, Maxwell L., 2009. "A Bayesian approach to bandwidth selection for multivariate kernel regression with an application to state-price density estimation," Journal of Econometrics, Elsevier, vol. 153(1), pages 21-32, November.
  8. Zhang, Xibin & King, Maxwell L., 2008. "Box-Cox stochastic volatility models with heavy-tails and correlated errors," Journal of Empirical Finance, Elsevier, vol. 15(3), pages 549-566, June.
  9. Lean, Hooi-Hooi & Wong, Wing-Keung & Zhang, Xibin, 2008. "The sizes and powers of some stochastic dominance tests: A Monte Carlo study for correlated and heteroskedastic distributions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(1), pages 30-48.
  10. Param Silvapulle & Xibin Zhang, 2007. "Assessing dependence changes using nonparametric methods," Applied Financial Economics Letters, Taylor and Francis Journals, vol. 3(6), pages 397-401.
  11. Robert Brooks & Xibin Zhang & Emawtee Bissoondoyal Bheenick, 2007. "Country risk and the estimation of asset return distributions," Quantitative Finance, Taylor & Francis Journals, vol. 7(3), pages 261-265.
  12. Zhang, Xibin & King, Maxwell L. & Hyndman, Rob J., 2006. "A Bayesian approach to bandwidth selection for multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 3009-3031, July.
  13. Yu, Jun & Yang, Zhenlin & Zhang, Xibin, 2006. "A class of nonlinear stochastic volatility models and its implications for pricing currency options," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2218-2231, December.
  14. Xibin Zhang & Maxwell L. King, 2005. "Influence Diagnostics in Generalized Autoregressive Conditional Heteroscedasticity Processes," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 118-129, January.
  15. Y. K. Tse & K. W. Ng & Xibin Zhang, 2004. "A small-sample overlapping variance-ratio test," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(1), pages 127-135, January.
  16. Xibin Zhang, 2004. "Assessment of Local Influence in GARCH Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(2), pages 301-313, March.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Tingting Cheng & Jiti Gao & Xibin Zhang, 2015. "Bayesian Bandwidth Estimation In Nonparametric Time-Varying Coefficient Models," Monash Econometrics and Business Statistics Working Papers 3/15, Monash University, Department of Econometrics and Business Statistics.

    Cited by:

    1. Lafourcade, Pierre & Gerali, Andrea & Brůha, Jan & Bursian, Dirk & Buss, Ginters & Corbo, Vesna & Haavio, Markus & Håkanson, Christina & Hlédik, Tibor & Kátay, Gábor & Kulikov, Dmitry & Lozej, Matija , 2016. "Labour market modelling in the light of the financial crisis," Occasional Paper Series 175, European Central Bank.

  2. Tingting Cheng & Jiti Gao & Xibin Zhang, 2014. "Semiparametric Localized Bandwidth Selection for Kernel Density Estimation," Monash Econometrics and Business Statistics Working Papers 27/14, Monash University, Department of Econometrics and Business Statistics.

    Cited by:

    1. Tingting Cheng & Jiti Gao & Oliver Linton, 2017. "Multi-step non- and semi-parametric predictive regressions for short and long horizon stock return prediction," Monash Econometrics and Business Statistics Working Papers 13/17, Monash University, Department of Econometrics and Business Statistics.
    2. Tingting Cheng & Jiti Gao & Oliver Linton, 2018. "Multi-step non- and semi-parametric predictive regressions for short and long horizon stock return prediction," CeMMAP working papers CWP03/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Sreevani, & Murthy, C.A., 2016. "On bandwidth selection using minimal spanning tree for kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 102(C), pages 67-84.

  3. Xibin Zhang & Maxwell L. King, 2013. "Gaussian kernel GARCH models," Monash Econometrics and Business Statistics Working Papers 19/13, Monash University, Department of Econometrics and Business Statistics.

    Cited by:

    1. Tingting Cheng & Jiti Gao & Xibin Zhang, 2014. "Semiparametric Localized Bandwidth Selection in Kernel Density Estimation," Monash Econometrics and Business Statistics Working Papers 14/14, Monash University, Department of Econometrics and Business Statistics.
    2. Haotian Chen & Xibin Zhang, 2014. "Bayesian Estimation for Partially Linear Models with an Application to Household Gasoline Consumption," Monash Econometrics and Business Statistics Working Papers 28/14, Monash University, Department of Econometrics and Business Statistics.
    3. Tingting Cheng & Jiti Gao & Xibin Zhang, 2016. "Nonparametric Localized Bandwidth Selection for Kernel Density Estimation," Monash Econometrics and Business Statistics Working Papers 7/16, Monash University, Department of Econometrics and Business Statistics.
    4. Chen, Haotian & Smyth, Russell & Zhang, Xibin, 2017. "A Bayesian sampling approach to measuring the price responsiveness of gasoline demand using a constrained partially linear model," Energy Economics, Elsevier, vol. 67(C), pages 346-354.
    5. Tingting Cheng & Jiti Gao & Xibin Zhang, 2014. "Semiparametric Localized Bandwidth Selection for Kernel Density Estimation," Monash Econometrics and Business Statistics Working Papers 27/14, Monash University, Department of Econometrics and Business Statistics.

  4. Xibin Zhang & Maxwell L. King & Han Lin Shang, 2013. "A sampling algorithm for bandwidth estimation in a nonparametric regression model with a flexible error density," Monash Econometrics and Business Statistics Working Papers 20/13, Monash University, Department of Econometrics and Business Statistics.

    Cited by:

    1. Xibin Zhang & Maxwell L. King & Han Lin Shang, 2016. "Bayesian Bandwidth Selection for a Nonparametric Regression Model with Mixed Types of Regressors," Econometrics, MDPI, Open Access Journal, vol. 4(2), pages 1-27, April.
    2. Tristan Senga Kiessé & Nabil Zougab & Célestin C. Kokonendji, 2016. "Bayesian estimation of bandwidth in semiparametric kernel estimation of unknown probability mass and regression functions of count data," Computational Statistics, Springer, vol. 31(1), pages 189-206, March.
    3. Philip T. Reiss & Jeff Goldsmith & Han Lin Shang & R. Todd Ogden, 2017. "Methods for Scalar-on-Function Regression," International Statistical Review, International Statistical Institute, vol. 85(2), pages 228-249, August.

  5. Xibin Zhang & Maxwell L. King & Han Lin Shang, 2013. "Bayesian bandwidth selection for a nonparametric regession model with mixed types of regressors," Monash Econometrics and Business Statistics Working Papers 13/13, Monash University, Department of Econometrics and Business Statistics.

    Cited by:

    1. Xibin Zhang & Maxwell L. King & Han Lin Shang, 2016. "Bayesian Bandwidth Selection for a Nonparametric Regression Model with Mixed Types of Regressors," Econometrics, MDPI, Open Access Journal, vol. 4(2), pages 1-27, April.
    2. Xu, Bin & Lin, Boqiang, 2017. "Assessing CO2 emissions in China's iron and steel industry: A nonparametric additive regression approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 325-337.

  6. Song Li & Mervyn J. Silvapulle & Param Silvapulle & Xibin Zhang, 2012. "Bayesian Approaches to Non-parametric Estimation of Densities on the Unit Interval," Monash Econometrics and Business Statistics Working Papers 3/12, Monash University, Department of Econometrics and Business Statistics.

    Cited by:

    1. Zougab, Nabil & Adjabi, Smail & Kokonendji, Célestin C., 2014. "Bayesian estimation of adaptive bandwidth matrices in multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 28-38.
    2. Song Li & Mervyn J. Silvapulle & Param Silvapulle & Xibin Zhang, 2015. "Bayesian Approaches to Nonparametric Estimation of Densities on the Unit Interval," Econometric Reviews, Taylor & Francis Journals, vol. 34(3), pages 394-412, March.

  7. Xibin Zhang & Maxwell L. King, 2011. "Bayesian semiparametric GARCH models," Monash Econometrics and Business Statistics Working Papers 24/11, Monash University, Department of Econometrics and Business Statistics.

    Cited by:

    1. Shang, Han Lin, 2013. "Bayesian bandwidth estimation for a nonparametric functional regression model with unknown error density," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 185-198.
    2. Xibin Zhang & Maxwell L. King & Han Lin Shang, 2016. "Bayesian Bandwidth Selection for a Nonparametric Regression Model with Mixed Types of Regressors," Econometrics, MDPI, Open Access Journal, vol. 4(2), pages 1-27, April.
    3. Zhang, Xibin & King, Maxwell L. & Shang, Han Lin, 2014. "A sampling algorithm for bandwidth estimation in a nonparametric regression model with a flexible error density," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 218-234.
    4. Xibin Zhang & Maxwell L. King & Han Lin Shang, 2011. "Bayesian estimation of bandwidths for a nonparametric regression model with a flexible error density," Monash Econometrics and Business Statistics Working Papers 10/11, Monash University, Department of Econometrics and Business Statistics.

  8. Maxwell L. King & Xibin Zhang & Muhammad Akram, 2011. "A New Procedure For Multiple Testing Of Econometric Models," Monash Econometrics and Business Statistics Working Papers 7/11, Monash University, Department of Econometrics and Business Statistics.

    Cited by:

    1. Jin Seo Cho & Halbert White, 2014. "Testing the Equality of Two Positive-Definite Matrices with Application to Information Matrix Testing," Working papers 2014rwp-67, Yonsei University, Yonsei Economics Research Institute.
    2. Julia Polak & Maxwell L. King & Xibin Zhang, 2014. "A Model Validation Procedure," Monash Econometrics and Business Statistics Working Papers 21/14, Monash University, Department of Econometrics and Business Statistics.

  9. Xibin Zhang & Maxwell L. King & Han Lin Shang, 2011. "Bayesian estimation of bandwidths for a nonparametric regression model with a flexible error density," Monash Econometrics and Business Statistics Working Papers 10/11, Monash University, Department of Econometrics and Business Statistics.

    Cited by:

    1. Shang, Han Lin, 2013. "Bayesian bandwidth estimation for a nonparametric functional regression model with unknown error density," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 185-198.
    2. Xibin Zhang & Maxwell L. King & Han Lin Shang, 2016. "Bayesian Bandwidth Selection for a Nonparametric Regression Model with Mixed Types of Regressors," Econometrics, MDPI, Open Access Journal, vol. 4(2), pages 1-27, April.

  10. Qing Liu & David Pitt & Xibin Zhang & Xueyuan Wu, 2010. "A Bayesian approach to parameter estimation for kernel density estimation via transformations," Monash Econometrics and Business Statistics Working Papers 18/10, Monash University, Department of Econometrics and Business Statistics.

    Cited by:

    1. Catalina Bolance & Montserrat Guillen & David Pitt, 2014. "Non-parametric Models for Univariate Claim Severity Distributions - an approach using R," Working Papers 2014-01, Universitat de Barcelona, UB Riskcenter.
    2. Zougab, Nabil & Adjabi, Smail & Kokonendji, Célestin C., 2014. "Bayesian estimation of adaptive bandwidth matrices in multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 28-38.
    3. David Pitt & Montserrat Guillen & Catalina Bolancé, 2011. "Estimation of Parametric and Nonparametric Models for Univariate Claim Severity Distributions - an approach using R," Working Papers XREAP2011-06, Xarxa de Referència en Economia Aplicada (XREAP), revised Jun 2011.

  11. Shuowen Hu & D.S. Poskitt & Xibin Zhang, 2010. "Bayesian Adaptive Bandwidth Kernel Density Estimation of Irregular Multivariate Distributions," Monash Econometrics and Business Statistics Working Papers 21/10, Monash University, Department of Econometrics and Business Statistics.

    Cited by:

    1. Y. Ziane & S. Adjabi & N. Zougab, 2015. "Adaptive Bayesian bandwidth selection in asymmetric kernel density estimation for nonnegative heavy-tailed data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(8), pages 1645-1658, August.
    2. Shuowen Hu & D.S. Poskitt & Xibin Zhang, 2010. "Bayesian Adaptive Bandwidth Kernel Density Estimation of Irregular Multivariate Distributions," Monash Econometrics and Business Statistics Working Papers 21/10, Monash University, Department of Econometrics and Business Statistics.
    3. Zougab, Nabil & Adjabi, Smail & Kokonendji, Célestin C., 2014. "Bayesian estimation of adaptive bandwidth matrices in multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 28-38.
    4. Yasmina Ziane & Nabil Zougab & Smail Adjabi, 2018. "Birnbaum–Saunders power-exponential kernel density estimation and Bayes local bandwidth selection for nonnegative heavy tailed data," Computational Statistics, Springer, vol. 33(1), pages 299-318, March.
    5. Tristan Senga Kiessé & Nabil Zougab & Célestin C. Kokonendji, 2016. "Bayesian estimation of bandwidth in semiparametric kernel estimation of unknown probability mass and regression functions of count data," Computational Statistics, Springer, vol. 31(1), pages 189-206, March.

  12. Xibin Zhang & Robert D. Brooks & Maxwell L. King, 2007. "A Bayesian approach to bandwidth selection for multivariate kernel regression with an application to state-price density estimation," Monash Econometrics and Business Statistics Working Papers 11/07, Monash University, Department of Econometrics and Business Statistics.

    Cited by:

    1. Anastasios Panagiotelis & Michael S. Smith & Peter J Danaher, 2013. "From Amazon to Apple: Modeling Online Retail Sales, Purchase Incidence and Visit Behavior," Monash Econometrics and Business Statistics Working Papers 5/13, Monash University, Department of Econometrics and Business Statistics.
    2. Song Li & Mervyn J. Silvapulle & Param Silvapulle & Xibin Zhang, 2015. "Bayesian Approaches to Nonparametric Estimation of Densities on the Unit Interval," Econometric Reviews, Taylor & Francis Journals, vol. 34(3), pages 394-412, March.
    3. Oliver Morell & Dennis Otto & Roland Fried, 2013. "On robust cross-validation for nonparametric smoothing," Computational Statistics, Springer, vol. 28(4), pages 1617-1637, August.
    4. Rong Zhang & Brett A. Inder & Xibin Zhang, 2012. "Parameter estimation for a discrete-response model with double rules of sample selection: A Bayesian approach," Monash Econometrics and Business Statistics Working Papers 5/12, Monash University, Department of Econometrics and Business Statistics.
    5. Han Shang, 2014. "Bayesian bandwidth estimation for a semi-functional partial linear regression model with unknown error density," Computational Statistics, Springer, vol. 29(3), pages 829-848, June.
    6. Shang, Han Lin, 2013. "Bayesian bandwidth estimation for a nonparametric functional regression model with unknown error density," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 185-198.
    7. Zhang, Rong & Inder, Brett A. & Zhang, Xibin, 2015. "Bayesian estimation of a discrete response model with double rules of sample selection," Computational Statistics & Data Analysis, Elsevier, vol. 86(C), pages 81-96.
    8. Jan Koláček & Ivana Horová, 2017. "Bandwidth matrix selectors for kernel regression," Computational Statistics, Springer, vol. 32(3), pages 1027-1046, September.
    9. Xibin Zhang & Maxwell L. King & Han Lin Shang, 2016. "Bayesian Bandwidth Selection for a Nonparametric Regression Model with Mixed Types of Regressors," Econometrics, MDPI, Open Access Journal, vol. 4(2), pages 1-27, April.
    10. Zhang, Xibin & King, Maxwell L. & Shang, Han Lin, 2014. "A sampling algorithm for bandwidth estimation in a nonparametric regression model with a flexible error density," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 218-234.
    11. Xibin Zhang & Maxwell L. King & Han Lin Shang, 2011. "Bayesian estimation of bandwidths for a nonparametric regression model with a flexible error density," Monash Econometrics and Business Statistics Working Papers 10/11, Monash University, Department of Econometrics and Business Statistics.
    12. Tristan Senga Kiessé & Nabil Zougab & Célestin C. Kokonendji, 2016. "Bayesian estimation of bandwidth in semiparametric kernel estimation of unknown probability mass and regression functions of count data," Computational Statistics, Springer, vol. 31(1), pages 189-206, March.
    13. Filippone, Maurizio & Sanguinetti, Guido, 2011. "Approximate inference of the bandwidth in multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3104-3122, December.
    14. Feng, Guohua & Zhang, Xiaohui, 2014. "Returns to scale at large banks in the US: A random coefficient stochastic frontier approach," Journal of Banking & Finance, Elsevier, vol. 39(C), pages 135-145.
    15. Hart, Jeffrey D. & Choi, Taeryon & Yi, Seongbaek, 2016. "Frequentist nonparametric goodness-of-fit tests via marginal likelihood ratios," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 120-132.
    16. Rong Zhang & Brett A. Inder & Xibin Zhang, 2013. "Bayesian estimation of a discrete response model with double rules of sample selection," Monash Econometrics and Business Statistics Working Papers 24/13, Monash University, Department of Econometrics and Business Statistics.

  13. Param Silvapulle & Xibin Zhang, 2006. "Assessing Dependence Changes in the Asian Financial Market Returns Using Plots Based on Nonparametric Measures," Monash Econometrics and Business Statistics Working Papers 9/06, Monash University, Department of Econometrics and Business Statistics.

    Cited by:

    1. Nguyen, Cuong C. & Bhatti, M. Ishaq, 2012. "Copula model dependency between oil prices and stock markets: Evidence from China and Vietnam," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 22(4), pages 758-773.

  14. Xibin Zhang & Maxwell L. King & Rob J. Hyndman, 2004. "Bandwidth Selection for Multivariate Kernel Density Estimation Using MCMC," Monash Econometrics and Business Statistics Working Papers 9/04, Monash University, Department of Econometrics and Business Statistics.

    Cited by:

    1. Zhang, Xibin & King, Maxwell L., 2008. "Box-Cox stochastic volatility models with heavy-tails and correlated errors," Journal of Empirical Finance, Elsevier, vol. 15(3), pages 549-566, June.
    2. Chauveau, Didier & Hoang, Vy Thuy Lynh, 2016. "Nonparametric mixture models with conditionally independent multivariate component densities," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 1-16.
    3. H. Poulos, 2010. "Spatially explicit mapping of hurricane risk in New England, USA using ArcGIS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 54(3), pages 1015-1023, September.
    4. Kenneth L. Sørensen & Rune Vejlin, 2014. "Return To Experience And Initial Wage Level: Do Low Wage Workers Catch Up?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(6), pages 984-1006, September.

  15. Xibin Zhang & Maxwell L. King, 2004. "Box-Cox Stochastic Volatility Models with Heavy-Tails and Correlated Errors," Monash Econometrics and Business Statistics Working Papers 26/04, Monash University, Department of Econometrics and Business Statistics.

    Cited by:

    1. Zhang, Xibin & King, Maxwell L. & Hyndman, Rob J., 2006. "A Bayesian approach to bandwidth selection for multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 3009-3031, July.
    2. Kaeck, Andreas & Rodrigues, Paulo & Seeger, Norman J., 2017. "Equity index variance: Evidence from flexible parametric jump–diffusion models," Journal of Banking & Finance, Elsevier, vol. 83(C), pages 85-103.
    3. Zhang, Xibin & King, Maxwell L., 2008. "Box-Cox stochastic volatility models with heavy-tails and correlated errors," Journal of Empirical Finance, Elsevier, vol. 15(3), pages 549-566, June.
    4. Gong, Xu & Wen, Fenghua & Xia, X.H. & Huang, Jianbai & Pan, Bin, 2017. "Investigating the risk-return trade-off for crude oil futures using high-frequency data," Applied Energy, Elsevier, vol. 196(C), pages 152-161.
    5. Harvey, A. & Chakravarty, T., 2008. "Beta-t-(E)GARCH," Cambridge Working Papers in Economics 0840, Faculty of Economics, University of Cambridge.
    6. Xibin Zhang & Maxwell L. King, 2011. "Bayesian semiparametric GARCH models," Monash Econometrics and Business Statistics Working Papers 24/11, Monash University, Department of Econometrics and Business Statistics.
    7. Xibin Zhang & Maxwell L. King, 2013. "Gaussian kernel GARCH models," Monash Econometrics and Business Statistics Working Papers 19/13, Monash University, Department of Econometrics and Business Statistics.
    8. María José Rodríguez & Esther Ruiz, 2012. "Revisiting Several Popular GARCH Models with Leverage Effect: Differences and Similarities," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 10(4), pages 637-668, September.
    9. Georgios Tsiotas, 2009. "On the use of non-linear transformations in Stochastic Volatility models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 18(4), pages 555-583, November.
    10. Ruiz, Esther & Rodríguez, Mª José, 2009. "GARCH models with leverage effect : differences and similarities," DES - Working Papers. Statistics and Econometrics. WS ws090302, Universidad Carlos III de Madrid. Departamento de Estadística.
    11. Weigand, Roland, 2014. "Matrix Box-Cox Models for Multivariate Realized Volatility," University of Regensburg Working Papers in Business, Economics and Management Information Systems 478, University of Regensburg, Department of Economics.
    12. Zhongxian Men & Adam W. Kolkiewicz & Tony S. Wirjanto, 2013. "Bayesian Inference of Asymmetric Stochastic Conditional Duration Models," Working Paper series 28_13, Rimini Centre for Economic Analysis.

  16. Y.K. Tse & Xibin Zhang, 2003. "A Monte Carlo Investigation of Some Tests for Stochastic Dominance," Monash Econometrics and Business Statistics Working Papers 7/03, Monash University, Department of Econometrics and Business Statistics.

    Cited by:

    1. Linton, Oliver & Maasoumi, Esfandiar & Whang, Yoon-Jae, 2002. "Consistent testing for stochastic dominance: a subsampling approach," LSE Research Online Documents on Economics 24927, London School of Economics and Political Science, LSE Library.
    2. Guo, Xu & Wong, Wing-Keung & Zhu, Lixing, 2013. "Make Almost Stochastic Dominance really Almost," MPRA Paper 49745, University Library of Munich, Germany.
    3. Lean, H.H. & McAleer, M.J. & Wong, W.-K., 2013. "Risk-averse and Risk-seeking Investor Preferences for Oil Spot and Futures," Econometric Institute Research Papers EI 2013-27, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    4. Daniel Sotelsek-Salem & Ismael Ahamdanech-Zarco & John Bishop, 2012. "Dominance testing for ‘pro-poor’ growth with an application to European growth," Empirical Economics, Springer, vol. 43(2), pages 723-739, October.
    5. Thomas C. Chiang & Hooi Hooi Lean & Wing-Keung Wong, 2008. "Do REITs Outperform Stocks and Fixed-Income Assets? New Evidence from Mean-Variance and Stochastic Dominance Approaches," Journal of Risk and Financial Management, MDPI, Open Access Journal, vol. 1(1), pages 1-40, December.
    6. Marcus Asplund & Volker Nocke, 2003. "Firm Turnover in Imperfectly Competitive Markets," PIER Working Paper Archive 03-010, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    7. Hooi Hooi Lean & Michael McAleer & Wing-Keung Wong, 2010. "Investor Preferences for Oil Spot and Futures Based on Mean-Variance and Stochastic Dominance," Working Papers in Economics 10/22, University of Canterbury, Department of Economics and Finance.
    8. Maasoumi, Esfandiar & Heshmati, Almas, 2005. "Evaluating Dominance Ranking of PSID Incomes by Various Household Attributes," IZA Discussion Papers 1727, Institute for the Study of Labor (IZA).
    9. Dahl, Bruce L. & Wilson, William W. & Nganje, William E., 2004. "Stochastic Dominance in Wheat Variety Development and Release Strategies," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 0(Number 1), pages 1-18, April.
    10. Michael D. Grubb, 2009. "Selling to Overconfident Consumers," American Economic Review, American Economic Association, vol. 99(5), pages 1770-1807, December.
    11. Oliver Linton & Kyungchul Song & Yoon-Jae Whang, 2008. "Bootstrap Tests of Stochastic Dominance with AsymptoticSimilarity on the Boundary," STICERD - Econometrics Paper Series 527, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    12. Thi Hong Van Hoang & Hooi Hooi Lean & Wing-Keung Wong, 2013. "Is Gold Good for Portfolio Diversification? A Stochastic Dominance Analysis of the Paris Stock Exchange," Working Papers 05-13, Association Française de Cliométrie (AFC).
    13. Dominic Gasbarro & Wing-Keung Wong & J. Kenton Zumwalt, 2007. "Stochastic Dominance Analysis of iShares," The European Journal of Finance, Taylor & Francis Journals, vol. 13(1), pages 89-101.
    14. Wong, Wing-Keung & Phoon, Kok Fai & Lean, Hooi Hooi, 2008. "Stochastic dominance analysis of Asian hedge funds," Pacific-Basin Finance Journal, Elsevier, vol. 16(3), pages 204-223, June.
    15. David Maddison, 2005. "Are There Too Many Revivals on Broadway? A Stochastic Dominance Approach," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 29(4), pages 325-334, November.
    16. Lean, H.H. & McAleer, M.J. & Wong, W.-K., 2010. "Market Efficiency of Oil Spot and Futures: A Stochastic Dominance Approach," Econometric Institute Research Papers EI 2010-11, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    17. Lean, Hooi Hooi & Smyth, Russell & Wong, Wing-Keung, 2007. "Revisiting calendar anomalies in Asian stock markets using a stochastic dominance approach," Journal of Multinational Financial Management, Elsevier, vol. 17(2), pages 125-141, April.
    18. Heshmati, Almas & Rudolf, Robert, 2013. "Income vs. Consumption Inequality in South Korea: Evaluating Stochastic Dominance Rankings by Various Household Attributes," IZA Discussion Papers 7731, Institute for the Study of Labor (IZA).
    19. Mishra, Vinod & Smyth, Russell, 2010. "An examination of the impact of India's performance in one-day cricket internationals on the Indian stock market," Pacific-Basin Finance Journal, Elsevier, vol. 18(3), pages 319-334, June.
    20. Hooi Lean & Kok Phoon & Wing-Keung Wong, 2013. "Stochastic dominance analysis of CTA funds," Review of Quantitative Finance and Accounting, Springer, vol. 40(1), pages 155-170, January.
    21. Duangkamon Chotikapanich & William E. Griffiths, 2006. "Bayesian Assessment of Lorenz and Stochastic Dominance in Income Distributions," Department of Economics - Working Papers Series 960, The University of Melbourne.

  17. Y.K. Tse & Xibin Zhang & Jun Yu, 2002. "Estimation of Hyperbolic Diffusion Using MCMC Method," Monash Econometrics and Business Statistics Working Papers 18/02, Monash University, Department of Econometrics and Business Statistics.

    Cited by:

    1. Zhang, Xibin & King, Maxwell L., 2008. "Box-Cox stochastic volatility models with heavy-tails and correlated errors," Journal of Empirical Finance, Elsevier, vol. 15(3), pages 549-566, June.
    2. Rob L. Hyndman & Xibin Zhang & Maxwell L. King,, 2004. "Bandwidth Selection for Multivariate Kernel Density Estimation Using MCMC," Econometric Society 2004 Australasian Meetings 120, Econometric Society.
    3. Peter C.B. Phillips & Jun Yu, 2007. "Maximum Likelihood and Gaussian Estimation of Continuous Time Models in Finance," Cowles Foundation Discussion Papers 1597, Cowles Foundation for Research in Economics, Yale University.
    4. Song Li & Mervyn J. Silvapulle & Param Silvapulle & Xibin Zhang, 2015. "Bayesian Approaches to Nonparametric Estimation of Densities on the Unit Interval," Econometric Reviews, Taylor & Francis Journals, vol. 34(3), pages 394-412, March.
    5. Xibin Zhang & Robert D. Brooks & Maxwell L. King, 2007. "A Bayesian approach to bandwidth selection for multivariate kernel regression with an application to state-price density estimation," Monash Econometrics and Business Statistics Working Papers 11/07, Monash University, Department of Econometrics and Business Statistics.
    6. Han Shang, 2014. "Bayesian bandwidth estimation for a semi-functional partial linear regression model with unknown error density," Computational Statistics, Springer, vol. 29(3), pages 829-848, June.
    7. Denitsa Stefanova, 2012. "Stock Market Asymmetries: A Copula Diffusion," Tinbergen Institute Discussion Papers 12-125/IV/DSF45, Tinbergen Institute.
    8. Xibin Zhang & Maxwell L. King & Han Lin Shang, 2016. "Bayesian Bandwidth Selection for a Nonparametric Regression Model with Mixed Types of Regressors," Econometrics, MDPI, Open Access Journal, vol. 4(2), pages 1-27, April.
    9. Zhang, Xibin & King, Maxwell L. & Shang, Han Lin, 2014. "A sampling algorithm for bandwidth estimation in a nonparametric regression model with a flexible error density," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 218-234.
    10. Xibin Zhang & Maxwell L. King & Han Lin Shang, 2011. "Bayesian estimation of bandwidths for a nonparametric regression model with a flexible error density," Monash Econometrics and Business Statistics Working Papers 10/11, Monash University, Department of Econometrics and Business Statistics.
    11. Malmsten, Hans & Teräsvirta, Timo, 2004. "Stylized Facts of Financial Time Series and Three Popular Models of Volatility," SSE/EFI Working Paper Series in Economics and Finance 563, Stockholm School of Economics, revised 03 Sep 2004.

  18. Jun Yu & Zhenlin Yang & Xibin Zhang, 2002. "A Class of Nonlinear Stochastic Volatility Models and Its Implications on Pricing Currency Options," Monash Econometrics and Business Statistics Working Papers 17/02, Monash University, Department of Econometrics and Business Statistics.

    Cited by:

    1. Kaeck, Andreas & Rodrigues, Paulo & Seeger, Norman J., 2017. "Equity index variance: Evidence from flexible parametric jump–diffusion models," Journal of Banking & Finance, Elsevier, vol. 83(C), pages 85-103.
    2. Zhang, Xibin & King, Maxwell L., 2008. "Box-Cox stochastic volatility models with heavy-tails and correlated errors," Journal of Empirical Finance, Elsevier, vol. 15(3), pages 549-566, June.
    3. Jun Yu, 2010. "Simulation-based Estimation Methods for Financial Time Series Models," Working Papers 19-2010, Singapore Management University, School of Economics.
    4. Goodwin, Roger L, 2015. "Random Variables, Their Properties, and Deviational Ellipses: In Map Point and Excel, v 4.3," MPRA Paper 64863, University Library of Munich, Germany, revised 07 Jun 2015.
    5. Rachidi Kotchoni, 2012. "Applications of the Characteristic Function Based Continuum GMM in Finance," Post-Print hal-00867795, HAL.
    6. Daniel PREVE & Anders ERIKSSON & Jun YU, 2009. "Forecasting Realized Volatility Using A Nonnegative Semiparametric Model," Working Papers 22-2009, Singapore Management University, School of Economics.
    7. Xiao, Wei-Lin & Zhang, Wei-Guo & Zhang, Xi-Li & Wang, Ying-Luo, 2010. "Pricing currency options in a fractional Brownian motion with jumps," Economic Modelling, Elsevier, vol. 27(5), pages 935-942, September.
    8. Carmen Broto & Esther Ruiz, 2004. "Estimation methods for stochastic volatility models: a survey," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 613-649, December.
    9. Mao, Xiuping & Ruiz, Esther & Veiga, Helena, 2017. "Threshold stochastic volatility: Properties and forecasting," International Journal of Forecasting, Elsevier, vol. 33(4), pages 1105-1123.
    10. Goodwin, Roger L, 2014. "Random Variables, Their Properties, and Deviational Ellipses: In Map Point and Excel, v 4.0," MPRA Paper 64391, University Library of Munich, Germany, revised 15 May 2015.
    11. Foschi, Paolo & Pascucci, Andrea, 2009. "Calibration of a path-dependent volatility model: Empirical tests," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2219-2235, April.
    12. Georgios Tsiotas, 2009. "On the use of non-linear transformations in Stochastic Volatility models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 18(4), pages 555-583, November.
    13. Lopes Moreira Da Veiga, María Helena & Ruiz Ortega, Esther & Mao, Xiuping, 2013. "One for all : nesting asymmetric stochastic volatility models," DES - Working Papers. Statistics and Econometrics. WS ws131110, Universidad Carlos III de Madrid. Departamento de Estadística.
    14. Kawakatsu, Hiroyuki, 2007. "Specification and estimation of discrete time quadratic stochastic volatility models," Journal of Empirical Finance, Elsevier, vol. 14(3), pages 424-442, June.
    15. Weigand, Roland, 2014. "Matrix Box-Cox Models for Multivariate Realized Volatility," University of Regensburg Working Papers in Business, Economics and Management Information Systems 478, University of Regensburg, Department of Economics.
    16. Veiga, Helena & Ruiz, Esther, 2006. "Modelling long-memory volatilities with leverage effect: ALMSV versus FIEGARCH," DES - Working Papers. Statistics and Econometrics. WS ws066016, Universidad Carlos III de Madrid. Departamento de Estadística.
    17. Borovkova, Svetlana & Permana, Ferry J., 2009. "Implied volatility in oil markets," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2022-2039, April.
    18. Giannikis, D. & Vrontos, I.D. & Dellaportas, P., 2008. "Modelling nonlinearities and heavy tails via threshold normal mixture GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1549-1571, January.

Articles

  1. Zhang, Rong & Inder, Brett A. & Zhang, Xibin, 2015. "Bayesian estimation of a discrete response model with double rules of sample selection," Computational Statistics & Data Analysis, Elsevier, vol. 86(C), pages 81-96.

    Cited by:

    1. Zeng-Hua Lu & Alec Zuo & Xibin Zhang, 2017. "Child disability, welfare payments, marital status and mothers’ labor supply: Evidence from Australia," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1339769-133, January.

  2. Song Li & Mervyn J. Silvapulle & Param Silvapulle & Xibin Zhang, 2015. "Bayesian Approaches to Nonparametric Estimation of Densities on the Unit Interval," Econometric Reviews, Taylor & Francis Journals, vol. 34(3), pages 394-412, March.
    See citations under working paper version above.
  3. Li, Han & O’Hare, Colin & Zhang, Xibin, 2015. "A semiparametric panel approach to mortality modeling," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 264-270.

    Cited by:

    1. Li, Han & O’Hare, Colin, 2017. "Semi-parametric extensions of the Cairns–Blake–Dowd model: A one-dimensional kernel smoothing approach," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 166-176.

  4. Zhang, Xibin & King, Maxwell L. & Shang, Han Lin, 2014. "A sampling algorithm for bandwidth estimation in a nonparametric regression model with a flexible error density," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 218-234.
    See citations under working paper version above.
  5. Hu, Shuowen & Poskitt, D.S. & Zhang, Xibin, 2012. "Bayesian adaptive bandwidth kernel density estimation of irregular multivariate distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 732-740.
    See citations under working paper version above.
  6. Jonathan Dark & Xibin Zhang & Nan Qu, 2010. "Influence diagnostics for multivariate GARCH processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(4), pages 278-291, July.

    Cited by:

    1. Fukang Zhu & Lei Shi & Shuangzhe Liu, 2015. "Influence diagnostics in log-linear integer-valued GARCH models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(3), pages 311-335, July.

  7. Zhang, Xibin & Brooks, Robert D. & King, Maxwell L., 2009. "A Bayesian approach to bandwidth selection for multivariate kernel regression with an application to state-price density estimation," Journal of Econometrics, Elsevier, vol. 153(1), pages 21-32, November.
    See citations under working paper version above.
  8. Zhang, Xibin & King, Maxwell L., 2008. "Box-Cox stochastic volatility models with heavy-tails and correlated errors," Journal of Empirical Finance, Elsevier, vol. 15(3), pages 549-566, June.
    See citations under working paper version above.
  9. Lean, Hooi-Hooi & Wong, Wing-Keung & Zhang, Xibin, 2008. "The sizes and powers of some stochastic dominance tests: A Monte Carlo study for correlated and heteroskedastic distributions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(1), pages 30-48.

    Cited by:

    1. Hoang, Thi-Hong-Van & Wong, Wing-Keung & Zhu, Zhenzhen, 2015. "Is gold different for risk-averse and risk-seeking investors? An empirical analysis of the Shanghai Gold Exchange," Economic Modelling, Elsevier, vol. 50(C), pages 200-211.
    2. Lam, Kin & Lean, Hooi Hooi & Wong, Wing-Keung, 2016. "Stochastic Dominance and Investors’ Behavior towards Risk: The Hong Kong Stocks and Futures Markets," MPRA Paper 74386, University Library of Munich, Germany.
    3. Zhidong Bai & Hua Li & Michael McAleer & Wing-Keung Wong, 2015. "Stochastic dominance statistics for risk averters and risk seekers: an analysis of stock preferences for USA and China," Quantitative Finance, Taylor & Francis Journals, vol. 15(5), pages 889-900, May.
    4. Thi Hong Van Hoang & Hooi Hooi Lean & Wing-Keung Wong, 2013. "Is Gold Good for Portfolio Diversification? A Stochastic Dominance Analysis of the Paris Stock Exchange," Working Papers 05-13, Association Française de Cliométrie (AFC).
    5. Valenzuela, Maria Rebecca & Wong, Wing-Keung & Zhen, Zhu Zhen, 2017. "Income and Consumption Inequality in the Philippines: A Stochastic Dominance Analysis of Household Unit Records," ADBI Working Papers 662, Asian Development Bank Institute.
    6. Sheung-Chi Chow & Ma. Rebecca Valenzuela & Wing-Keung Wong, 2016. "New Tests for Richness and Poorness:A Stochastic Dominance Analysis of Income Distributions in Hong Kong," Monash Economics Working Papers 25-16, Monash University, Department of Economics.
    7. Lean, Hooi Hooi & McAleer, Michael & Wong, Wing-Keung, 2010. "Market efficiency of oil spot and futures: A mean-variance and stochastic dominance approach," Energy Economics, Elsevier, vol. 32(5), pages 979-986, September.
    8. Al-Khazali, Osamah & Mirzaei, Ali, 2017. "Stock market anomalies, market efficiency and the adaptive market hypothesis: Evidence from Islamic stock indices," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 51(C), pages 190-208.
    9. Lean, H.H. & McAleer, M.J. & Wong, W.-K., 2010. "Market Efficiency of Oil Spot and Futures: A Stochastic Dominance Approach," Econometric Institute Research Papers EI 2010-11, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    10. Ng, Pin & Wong, Wing-Keung & Xiao, Zhijie, 2017. "Stochastic dominance via quantile regression with applications to investigate arbitrage opportunity and market efficiency," European Journal of Operational Research, Elsevier, vol. 261(2), pages 666-678.
    11. El khamlichi, Abdelbari & HOANG, Thi Hong Van & Wong, Wing-Keung, 2017. "Is Gold Different for Islamic and Conventional Portfolios? A Sectorial Analysis," MPRA Paper 76282, University Library of Munich, Germany.
    12. Qiao, Zhuo & Wong, Wing-Keung & Fung, Joseph K.W., 2013. "Stochastic dominance relationships between stock and stock index futures markets: International evidence," Economic Modelling, Elsevier, vol. 33(C), pages 552-559.
    13. Al-Khazali, Osamah & Lean, Hooi Hooi & Samet, Anis, 2014. "Do Islamic stock indexes outperform conventional stock indexes? A stochastic dominance approach," Pacific-Basin Finance Journal, Elsevier, vol. 28(C), pages 29-46.
    14. Elie Bouri & Rangan Gupta & Wing-Keung Wong & Zhenzhen Zhu, 2017. "Is Wine a Good Choice for Investment?," Working Papers 201781, University of Pretoria, Department of Economics.
    15. Al-Khazali, Osamah, 2014. "Revisiting fast profit investor sentiment and stock returns during Ramadan," International Review of Financial Analysis, Elsevier, vol. 33(C), pages 158-170.

  10. Param Silvapulle & Xibin Zhang, 2007. "Assessing dependence changes using nonparametric methods," Applied Financial Economics Letters, Taylor and Francis Journals, vol. 3(6), pages 397-401.

    Cited by:

    1. Luo, Weiwei & Brooks, Robert D. & Silvapulle, Param, 2011. "Effects of the open policy on the dependence between the Chinese 'A' stock market and other equity markets: An industry sector perspective," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 21(1), pages 49-74, February.

  11. Zhang, Xibin & King, Maxwell L. & Hyndman, Rob J., 2006. "A Bayesian approach to bandwidth selection for multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 3009-3031, July.

    Cited by:

    1. Y. Ziane & S. Adjabi & N. Zougab, 2015. "Adaptive Bayesian bandwidth selection in asymmetric kernel density estimation for nonnegative heavy-tailed data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(8), pages 1645-1658, August.
    2. Seok Young Hong & Oliver Linton, 2016. "Asymptotic properties of a Nadaraya-Watson type estimator for regression functions of in?finite order," CeMMAP working papers CWP53/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Catalina Bolance & Montserrat Guillen & David Pitt, 2014. "Non-parametric Models for Univariate Claim Severity Distributions - an approach using R," Working Papers 2014-01, Universitat de Barcelona, UB Riskcenter.
    4. Maxwell L. King & Xibin Zhang & Muhammad Akram, 2011. "A New Procedure For Multiple Testing Of Econometric Models," Monash Econometrics and Business Statistics Working Papers 7/11, Monash University, Department of Econometrics and Business Statistics.
    5. Zhang, Xibin & King, Maxwell L., 2008. "Box-Cox stochastic volatility models with heavy-tails and correlated errors," Journal of Empirical Finance, Elsevier, vol. 15(3), pages 549-566, June.
    6. Shuowen Hu & D.S. Poskitt & Xibin Zhang, 2010. "Bayesian Adaptive Bandwidth Kernel Density Estimation of Irregular Multivariate Distributions," Monash Econometrics and Business Statistics Working Papers 21/10, Monash University, Department of Econometrics and Business Statistics.
    7. Anastasios Panagiotelis & Michael S. Smith & Peter J Danaher, 2013. "From Amazon to Apple: Modeling Online Retail Sales, Purchase Incidence and Visit Behavior," Monash Econometrics and Business Statistics Working Papers 5/13, Monash University, Department of Econometrics and Business Statistics.
    8. Zougab, Nabil & Adjabi, Smail & Kokonendji, Célestin C., 2014. "Bayesian estimation of adaptive bandwidth matrices in multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 28-38.
    9. Xibin Zhang & Maxwell L. King, 2011. "Bayesian semiparametric GARCH models," Monash Econometrics and Business Statistics Working Papers 24/11, Monash University, Department of Econometrics and Business Statistics.
    10. Song Li & Mervyn J. Silvapulle & Param Silvapulle & Xibin Zhang, 2015. "Bayesian Approaches to Nonparametric Estimation of Densities on the Unit Interval," Econometric Reviews, Taylor & Francis Journals, vol. 34(3), pages 394-412, March.
    11. Xibin Zhang & Robert D. Brooks & Maxwell L. King, 2007. "A Bayesian approach to bandwidth selection for multivariate kernel regression with an application to state-price density estimation," Monash Econometrics and Business Statistics Working Papers 11/07, Monash University, Department of Econometrics and Business Statistics.
    12. David Pitt & Montserrat Guillén, 2010. "An introduction to parametric and non-parametric models for bivariate positive insurance claim severity distributions," Working Papers XREAP2010-03, Xarxa de Referència en Economia Aplicada (XREAP), revised Mar 2010.
    13. David Pitt & Montserrat Guillen & Catalina Bolancé, 2011. "Estimation of Parametric and Nonparametric Models for Univariate Claim Severity Distributions - an approach using R," Working Papers XREAP2011-06, Xarxa de Referència en Economia Aplicada (XREAP), revised Jun 2011.
    14. Madeleine Cule & Richard Samworth & Michael Stewart, 2010. "Maximum likelihood estimation of a multi-dimensional log-concave density," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(5), pages 545-607.
    15. Xibin Zhang & Maxwell L. King, 2013. "Gaussian kernel GARCH models," Monash Econometrics and Business Statistics Working Papers 19/13, Monash University, Department of Econometrics and Business Statistics.
    16. Rong Zhang & Brett A. Inder & Xibin Zhang, 2012. "Parameter estimation for a discrete-response model with double rules of sample selection: A Bayesian approach," Monash Econometrics and Business Statistics Working Papers 5/12, Monash University, Department of Econometrics and Business Statistics.
    17. Yasmina Ziane & Nabil Zougab & Smail Adjabi, 2018. "Birnbaum–Saunders power-exponential kernel density estimation and Bayes local bandwidth selection for nonnegative heavy tailed data," Computational Statistics, Springer, vol. 33(1), pages 299-318, March.
    18. Elena Di Bernardino & Didier Rullière, 2015. "Estimation of multivariate critical layers: Applications to rainfall data," Post-Print hal-00940089, HAL.
    19. Groß, Marcus & Rendtel, Ulrich & Schmid, Timo & Schmon, Sebastian & Tzavidis, Nikos, 2015. "Estimating the density of ethnic minorities and aged people in Berlin: Multivariate kernel density estimation applied to sensitive geo-referenced administrative data protected via measurement error," Discussion Papers 2015/7, Free University Berlin, School of Business & Economics.
    20. Mukhopadhyay, Subhadeep & Ghosh, Anil K., 2011. "Bayesian multiscale smoothing in supervised and semi-supervised kernel discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2344-2353, July.
    21. Perrin, G. & Soize, C. & Ouhbi, N., 2018. "Data-driven kernel representations for sampling with an unknown block dependence structure under correlation constraints," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 139-154.
    22. Tingting Cheng & Jiti Gao & Xibin Zhang, 2016. "Nonparametric Localized Bandwidth Selection for Kernel Density Estimation," Monash Econometrics and Business Statistics Working Papers 7/16, Monash University, Department of Econometrics and Business Statistics.
    23. Xibin Zhang & Maxwell L. King & Han Lin Shang, 2016. "Bayesian Bandwidth Selection for a Nonparametric Regression Model with Mixed Types of Regressors," Econometrics, MDPI, Open Access Journal, vol. 4(2), pages 1-27, April.
    24. MacDonald, A. & Scarrott, C.J. & Lee, D. & Darlow, B. & Reale, M. & Russell, G., 2011. "A flexible extreme value mixture model," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2137-2157, June.
    25. Xibin Zhang & Maxwell L. King & Han Lin Shang, 2011. "Bayesian estimation of bandwidths for a nonparametric regression model with a flexible error density," Monash Econometrics and Business Statistics Working Papers 10/11, Monash University, Department of Econometrics and Business Statistics.
    26. Julia Polak & Maxwell L. King & Xibin Zhang, 2014. "A Model Validation Procedure," Monash Econometrics and Business Statistics Working Papers 21/14, Monash University, Department of Econometrics and Business Statistics.
    27. Filippone, Maurizio & Sanguinetti, Guido, 2011. "Approximate inference of the bandwidth in multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3104-3122, December.
    28. Sreevani, & Murthy, C.A., 2016. "On bandwidth selection using minimal spanning tree for kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 102(C), pages 67-84.
    29. Matthew D. Baird, 2014. "Cross Validation Bandwidth Selection for Derivatives of Multidimensional Densities," Working Papers WR-1060, RAND Corporation.
    30. Groß, Marcus & Rendtel, Ulrich, 2015. "Kernel density estimation for heaped data," Discussion Papers 2015/27, Free University Berlin, School of Business & Economics.
    31. Marcus Groß & Ulrich Rendtel & Timo Schmid & Sebastian Schmon & Nikos Tzavidis, 2017. "Estimating the density of ethnic minorities and aged people in Berlin: multivariate kernel density estimation applied to sensitive georeferenced administrative data protected via measurement error," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(1), pages 161-183, January.
    32. Tingting Cheng & Jiti Gao & Xibin Zhang, 2014. "Semiparametric Localized Bandwidth Selection for Kernel Density Estimation," Monash Econometrics and Business Statistics Working Papers 27/14, Monash University, Department of Econometrics and Business Statistics.
    33. Hart, Jeffrey D. & Choi, Taeryon & Yi, Seongbaek, 2016. "Frequentist nonparametric goodness-of-fit tests via marginal likelihood ratios," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 120-132.

  12. Yu, Jun & Yang, Zhenlin & Zhang, Xibin, 2006. "A class of nonlinear stochastic volatility models and its implications for pricing currency options," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2218-2231, December.
    See citations under working paper version above.
  13. Xibin Zhang & Maxwell L. King, 2005. "Influence Diagnostics in Generalized Autoregressive Conditional Heteroscedasticity Processes," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 118-129, January.

    Cited by:

    1. Amélie Charles & Olivier Darné, 2012. "Volatility Persistence in Crude Oil Markets," Working Papers hal-00719387, HAL.
    2. F. Javier Trivez & Beatriz Catalan, 2009. "Detecting level shifts in ARMA-GARCH (1,1) Models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(6), pages 679-697.
    3. Charles, Amélie & Darné, Olivier, 2014. "Large shocks in the volatility of the Dow Jones Industrial Average index: 1928–2013," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 188-199.
    4. Ané, Thierry & Ureche-Rangau, Loredana & Gambet, Jean-Benoît & Bouverot, Julien, 2008. "Robust outlier detection for Asia-Pacific stock index returns," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 18(4), pages 326-343, October.
    5. Fukang Zhu & Lei Shi & Shuangzhe Liu, 2015. "Influence diagnostics in log-linear integer-valued GARCH models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(3), pages 311-335, July.
    6. Grané, Aurea & Veiga, Helena, 2010. "Wavelet-based detection of outliers in financial time series," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2580-2593, November.
    7. Fukang Zhu & Shuangzhe Liu & Lei Shi, 2016. "Local influence analysis for Poisson autoregression with an application to stock transaction data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 70(1), pages 4-25, February.
    8. Chikashi Tsuji & David McMillan, 2016. "Does the fear gauge predict downside risk more accurately than econometric models? Evidence from the US stock market," Cogent Economics & Finance, Taylor & Francis Journals, vol. 4(1), pages 1220711-122, December.
    9. Lei Shi & Md. Mostafizur Rahman & Wen Gan & Jianhua Zhao, 2015. "Stepwise local influence in generalized autoregressive conditional heteroskedasticity models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(2), pages 428-444, February.
    10. Jonathan Dark & Xibin Zhang & Nan Qu, 2010. "Influence diagnostics for multivariate GARCH processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(4), pages 278-291, July.
    11. Xiaowen Dai & Libin Jin & Anqi Shi & Lei Shi, 2016. "Outlier detection and accommodation in general spatial models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(3), pages 453-475, August.
    12. Behmiri, Niaz Bashiri & Manera, Matteo, 2015. "The role of outliers and oil price shocks on volatility of metal prices," Resources Policy, Elsevier, vol. 46(P2), pages 139-150.
    13. Loredana Ureche-Rangau & Franck Speeg, 2011. "A simple method for variance shift detection at unknown time points," Economics Bulletin, AccessEcon, vol. 31(3), pages 2204-2218.

  14. Y. K. Tse & K. W. Ng & Xibin Zhang, 2004. "A small-sample overlapping variance-ratio test," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(1), pages 127-135, January.

    Cited by:

    1. Amélie Charles & Olivier Darné, 2009. "Variance-Ratio Tests Of Random Walk: An Overview," Journal of Economic Surveys, Wiley Blackwell, vol. 23(3), pages 503-527, July.
    2. Amelie Charles & Olivier Darne, 2009. "Testing for Random Walk Behavior in Euro Exchange Rates," Economie Internationale, CEPII research center, issue 119, pages 25-45.
    3. Azad, A.S.M. Sohel, 2009. "Random walk and efficiency tests in the Asia-Pacific foreign exchange markets: Evidence from the post-Asian currency crisis data," Research in International Business and Finance, Elsevier, vol. 23(3), pages 322-338, September.

  15. Xibin Zhang, 2004. "Assessment of Local Influence in GARCH Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(2), pages 301-313, March.

    Cited by:

    1. Ruiz, Esther & Peña, Daniel & Carnero, María Ángeles, 2004. "Spurious and hidden volatility," DES - Working Papers. Statistics and Econometrics. WS ws042007, Universidad Carlos III de Madrid. Departamento de Estadística.
    2. Grossi, Luigi & Laurini, Fabrizio, 2009. "A robust forward weighted Lagrange multiplier test for conditional heteroscedasticity," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2251-2263, April.
    3. Veiga, Helena & Grané, Aurea, 2010. "Outliers in Garch models and the estimation of risk measures," DES - Working Papers. Statistics and Econometrics. WS ws100502, Universidad Carlos III de Madrid. Departamento de Estadística.
    4. Fukang Zhu & Lei Shi & Shuangzhe Liu, 2015. "Influence diagnostics in log-linear integer-valued GARCH models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(3), pages 311-335, July.
    5. Xibin Zhang & Maxwell L. King, 2002. "Influence Diagnostics in GARCH Processes," Monash Econometrics and Business Statistics Working Papers 19/02, Monash University, Department of Econometrics and Business Statistics.
    6. Grané, Aurea & Veiga, Helena, 2010. "Wavelet-based detection of outliers in financial time series," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2580-2593, November.
    7. Lei Shi & Md. Mostafizur Rahman & Wen Gan & Jianhua Zhao, 2015. "Stepwise local influence in generalized autoregressive conditional heteroskedasticity models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(2), pages 428-444, February.
    8. L. Grossi & G. Morelli, 2006. "Robust volatility forecasts and model selection in financial time series," Economics Department Working Papers 2006-SE02, Department of Economics, Parma University (Italy).
    9. Jonathan Dark & Xibin Zhang & Nan Qu, 2010. "Influence diagnostics for multivariate GARCH processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(4), pages 278-291, July.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Co-authorship network on CollEc

NEP Fields

NEP is an announcement service for new working papers, with a weekly report in each of many fields. This author has had 20 papers announced in NEP. These are the fields, ordered by number of announcements, along with their dates. If the author is listed in the directory of specialists for this field, a link is also provided.
  1. NEP-ECM: Econometrics (19) 2002-12-10 2002-12-18 2002-12-18 2003-04-24 2003-05-29 2004-05-02 2004-12-12 2007-08-18 2010-10-30 2011-01-03 2011-06-18 2011-09-05 2011-11-21 2012-03-08 2013-11-16 2013-11-16 2014-12-19 2015-01-19 2015-03-05. Author is listed
  2. NEP-ETS: Econometric Time Series (10) 2002-12-02 2002-12-17 2002-12-17 2003-05-29 2004-05-02 2004-12-12 2011-06-18 2011-11-21 2012-03-08 2013-11-16. Author is listed
  3. NEP-RMG: Risk Management (7) 2002-12-02 2002-12-17 2003-04-21 2003-05-29 2011-09-05 2011-11-21 2013-11-16. Author is listed
  4. NEP-FOR: Forecasting (6) 2011-09-05 2011-11-21 2013-06-30 2013-11-16 2013-11-16 2014-12-19. Author is listed
  5. NEP-ORE: Operations Research (4) 2011-09-05 2011-11-21 2015-01-19 2015-03-05
  6. NEP-CMP: Computational Economics (3) 2003-04-21 2003-05-29 2004-12-12
  7. NEP-FIN: Finance (3) 2004-12-12 2004-12-15 2006-05-27
  8. NEP-FMK: Financial Markets (2) 2002-12-02 2006-05-27
  9. NEP-CFN: Corporate Finance (1) 2002-12-02
  10. NEP-ENE: Energy Economics (1) 2015-01-19
  11. NEP-IFN: International Finance (1) 2002-12-02
  12. NEP-MFD: Microfinance (1) 2015-03-05
  13. NEP-SEA: South East Asia (1) 2006-05-27

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Xibin Zhang should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.