IDEAS home Printed from https://ideas.repec.org/p/auc/wpaper/182.html

Estimation of Hyperbolic Diffusion using MCMC Method

Author

Listed:
  • Tse, Y.K.
  • Zhang, Bill
  • Yu, Jun

Abstract

In this paper we propose a Bayesian method for estimating hyperbolic diffusion models. The approach is based on the Markov Chain Monte Carlo (MCMC) method after discretization via the Milstein scheme. Our simulation study shows that the hyperbolic diffusion exhibits many of the stylized facts about asset returns documented in the financial econometrics literature, such as a slowly declining autocorrelation function of absolute returns. We demonstrate that the MCMC method provides a useful tool to analyze hyperbolic diffusions. In particular, quantities of posterior distributions obtained from MCMC outputs can be used for statistical inferences.

Suggested Citation

  • Tse, Y.K. & Zhang, Bill & Yu, Jun, 2002. "Estimation of Hyperbolic Diffusion using MCMC Method," Working Papers 182, Department of Economics, The University of Auckland.
  • Handle: RePEc:auc:wpaper:182
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/2292/182
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. is not listed on IDEAS
    2. Malmsten, Hans & Teräsvirta, Timo, 2004. "Stylized Facts of Financial Time Series and Three Popular Models of Volatility," SSE/EFI Working Paper Series in Economics and Finance 563, Stockholm School of Economics, revised 03 Sep 2004.
    3. Zhang, Xibin & Brooks, Robert D. & King, Maxwell L., 2009. "A Bayesian approach to bandwidth selection for multivariate kernel regression with an application to state-price density estimation," Journal of Econometrics, Elsevier, vol. 153(1), pages 21-32, November.
    4. Han Shang, 2014. "Bayesian bandwidth estimation for a semi-functional partial linear regression model with unknown error density," Computational Statistics, Springer, vol. 29(3), pages 829-848, June.
    5. Rob L. Hyndman & Xibin Zhang & Maxwell L. King,, 2004. "Bandwidth Selection for Multivariate Kernel Density Estimation Using MCMC," Econometric Society 2004 Australasian Meetings 120, Econometric Society.
    6. Xibin Zhang & Maxwell L. King & Han Lin Shang, 2011. "Bayesian estimation of bandwidths for a nonparametric regression model with a flexible error density," Monash Econometrics and Business Statistics Working Papers 10/11, Monash University, Department of Econometrics and Business Statistics.
    7. Zhang, Xibin & King, Maxwell L., 2008. "Box-Cox stochastic volatility models with heavy-tails and correlated errors," Journal of Empirical Finance, Elsevier, vol. 15(3), pages 549-566, June.
    8. Song Li & Mervyn J. Silvapulle & Param Silvapulle & Xibin Zhang, 2015. "Bayesian Approaches to Nonparametric Estimation of Densities on the Unit Interval," Econometric Reviews, Taylor & Francis Journals, vol. 34(3), pages 394-412, March.
    9. Xibin Zhang & Maxwell L. King & Han Lin Shang, 2016. "Bayesian Bandwidth Selection for a Nonparametric Regression Model with Mixed Types of Regressors," Econometrics, MDPI, vol. 4(2), pages 1-27, April.
    10. Peter C. B. Phillips & Jun Yu, 2009. "Maximum Likelihood and Gaussian Estimation of Continuous Time Models in Finance," Springer Books, in: Thomas Mikosch & Jens-Peter Kreiß & Richard A. Davis & Torben Gustav Andersen (ed.), Handbook of Financial Time Series, chapter 22, pages 497-530, Springer.
    11. Zhang, Xibin & King, Maxwell L. & Shang, Han Lin, 2014. "A sampling algorithm for bandwidth estimation in a nonparametric regression model with a flexible error density," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 218-234.
    12. Denitsa Stefanova, 2012. "Stock Market Asymmetries: A Copula Diffusion," Tinbergen Institute Discussion Papers 12-125/IV/DSF45, Tinbergen Institute.

    More about this item

    Keywords

    ;
    ;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:auc:wpaper:182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Library Digital Development (email available below). General contact details of provider: https://edirc.repec.org/data/deaucnz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.