IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Daily exchange rate behaviour and hedging of currency risk

  • Bos, C.S.
  • Mahieu, R.J.
  • van Dijk, H.K.

Exchange rates typically exhibit time-varying patterns in both means and variances. The histograms of such series indicate heavy tails. In this paper we construct models which enable a decision-maker to analyze the implications of such time series patterns for currency risk management. Our approach is Bayesian where extensive use is made of Markov chain Monte Carlo methods. The effects of several model characteristics (unit roots, GARCH, stochastic volatility, heavy tailed disturbance densities) are investigated in relation to the hedging decision strategies. Consequently, we can make a distinction between statistical relevance of model specifications, and the economic consequences from a risk management point of view. The empirical results suggest that econometric modelling of heavy tails and time-varying means and variances pays off compared to a efficient markets model. The different ways to measure persistence and changing volatilities appear to strongly influence the hedging decision the investor faces.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://repub.eur.nl/pub/1605/feweco19991013120227.pdf
Download Restriction: no

Paper provided by Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute in its series Econometric Institute Research Papers with number EI 9936/A.

as
in new window

Length:
Date of creation: 13 Oct 1999
Handle: RePEc:ems:eureir:1605
Contact details of provider: Postal:
Postbus 1738, 3000 DR Rotterdam

Phone: 31 10 4081111
Web page: http://www.eur.nl/ese

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Koop, G. & van Dijk, H.K., 1999. "Testing for integration using evolving trend and seasonal models: A Bayesian approach," Econometric Institute Research Papers EI 9934/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  2. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 1994. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 371-89, October.
  3. John Geweke & Guofu Zhou, 1996. "Measuring the Pricing Error of the Arbitrage Pricing Theory," CEMA Working Papers 276, China Economics and Management Academy, Central University of Finance and Economics.
  4. Shmuel Kandel & Robert McCulloch & Robert F. Stambaugh, 1993. "Bayesian Inference and Portfolio Efficiency," NBER Technical Working Papers 0134, National Bureau of Economic Research, Inc.
  5. McCulloch, Robert & Rossi, Peter E., 1991. "A bayesian approach to testing the arbitrage pricing theory," Journal of Econometrics, Elsevier, vol. 49(1-2), pages 141-168.
  6. Luc Bauwens & Michel Lubrano, 1998. "Bayesian inference on GARCH models using the Gibbs sampler," Econometrics Journal, Royal Economic Society, vol. 1(Conferenc), pages C23-C46.
  7. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 33(1), pages 125-132.
  8. John F. Geweke, 1991. "Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments," Staff Report 148, Federal Reserve Bank of Minneapolis.
  9. Bansal, Ravi, 1997. "An Exploration of the Forward Premium Puzzle in Currency Markets," Review of Financial Studies, Society for Financial Studies, vol. 10(2), pages 369-403.
  10. Siem Jan Koopman & Neil Shephard & Jurgen A. Doornik, 1999. "Statistical algorithms for models in state space using SsfPack 2.2," Econometrics Journal, Royal Economic Society, vol. 2(1), pages 107-160.
  11. Kleibergen, F & Van Dijk, H K, 1993. "Non-stationarity in GARCH Models: A Bayesian Analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages S41-61, Suppl. De.
  12. Nelson, Daniel B., 1990. "Stationarity and Persistence in the GARCH(1,1) Model," Econometric Theory, Cambridge University Press, vol. 6(03), pages 318-334, September.
  13. LeBaron, B., 1996. "Technical Trading Rule Profitability and Foreing Exchange Intervention," Working papers 9445r, Wisconsin Madison - Social Systems.
  14. Bauwens, Luc & Lubrano, Michel & Richard, Jean-Francois, 2000. "Bayesian Inference in Dynamic Econometric Models," OUP Catalogue, Oxford University Press, number 9780198773139, December.
  15. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
  16. Jorion, Philippe, 1986. "Bayes-Stein Estimation for Portfolio Analysis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 21(03), pages 279-292, September.
  17. Engel, Charles & Hamilton, James D, 1990. "Long Swings in the Dollar: Are They in the Data and Do Markets Know It?," American Economic Review, American Economic Association, vol. 80(4), pages 689-713, September.
  18. Carter, C.K. & Kohn, R., . "Markov Chain Monte Carlo in Conditionally Gaussian State Space Models," Statistics Working Paper _003, Australian Graduate School of Management.
  19. Fama, Eugene F, 1991. " Efficient Capital Markets: II," Journal of Finance, American Finance Association, vol. 46(5), pages 1575-617, December.
  20. Lewis, K. & Evans, M.D.D., 1993. "Do Long-Term Swings in the Dollar Affect Estimates of the Risk Premia?," Weiss Center Working Papers 93-12, Wharton School - Weiss Center for International Financial Research.
  21. Geweke, John, 1989. "Exact predictive densities for linear models with arch disturbances," Journal of Econometrics, Elsevier, vol. 40(1), pages 63-86, January.
  22. McCulloch, Robert & Rossi, Peter E., 1990. "Posterior, predictive, and utility-based approaches to testing the arbitrage pricing theory," Journal of Financial Economics, Elsevier, vol. 28(1-2), pages 7-38.
  23. Dale J. Poirier, 1995. "Intermediate Statistics and Econometrics: A Comparative Approach," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262161494, March.
  24. Stephen J. Taylor, 1994. "Modeling Stochastic Volatility: A Review And Comparative Study," Mathematical Finance, Wiley Blackwell, vol. 4(2), pages 183-204.
  25. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-62, November.
  26. John Geweke, 1999. "Using simulation methods for bayesian econometric models: inference, development,and communication," Econometric Reviews, Taylor & Francis Journals, vol. 18(1), pages 1-73.
  27. Mark, Nelson C, 1995. "Exchange Rates and Fundamentals: Evidence on Long-Horizon Predictability," American Economic Review, American Economic Association, vol. 85(1), pages 201-18, March.
  28. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
  29. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 361-393.
  30. Bansal, Ravi & Dahlquist, Magnus, 2000. "The forward premium puzzle: different tales from developed and emerging economies," Journal of International Economics, Elsevier, vol. 51(1), pages 115-144, June.
  31. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comments: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 413-17, October.
  32. Neil Shephard, 2005. "Stochastic Volatility," Economics Papers 2005-W17, Economics Group, Nuffield College, University of Oxford.
  33. Nicholas Barberis, 2000. "Investing for the Long Run when Returns Are Predictable," Journal of Finance, American Finance Association, vol. 55(1), pages 225-264, 02.
  34. Jorion, Philippe, 1985. "International Portfolio Diversification with Estimation Risk," The Journal of Business, University of Chicago Press, vol. 58(3), pages 259-78, July.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ems:eureir:1605. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (RePub)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.