IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Daily exchange rate behaviour and hedging of currency risk

  • Bos, C.S.
  • Mahieu, R.J.
  • van Dijk, H.K.

Exchange rates typically exhibit time-varying patterns in both means and variances. The histograms of such series indicate heavy tails. In this paper we construct models which enable a decision-maker to analyze the implications of such time series patterns for currency risk management. Our approach is Bayesian where extensive use is made of Markov chain Monte Carlo methods. The effects of several model characteristics (unit roots, GARCH, stochastic volatility, heavy tailed disturbance densities) are investigated in relation to the hedging decision strategies. Consequently, we can make a distinction between statistical relevance of model specifications, and the economic consequences from a risk management point of view. The empirical results suggest that econometric modelling of heavy tails and time-varying means and variances pays off compared to a efficient markets model. The different ways to measure persistence and changing volatilities appear to strongly influence the hedging decision the investor faces.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://repub.eur.nl/pub/1605/feweco19991013120227.pdf
Download Restriction: no

Paper provided by Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute in its series Econometric Institute Research Papers with number EI 9936/A.

as
in new window

Length:
Date of creation: 13 Oct 1999
Date of revision:
Handle: RePEc:ems:eureir:1605
Contact details of provider: Postal: Postbus 1738, 3000 DR Rotterdam
Phone: 31 10 4081111
Web page: http://www.eur.nl/ese

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
  2. Sangjoon Kim, Neil Shephard & Siddhartha Chib, . "Stochastic volatility: likelihood inference and comparison with ARCH models," Economics Papers W26, revised version of W, Economics Group, Nuffield College, University of Oxford.
  3. Blake LeBaron, . "Technical Trading Rule Profitability and Foreign Exchange Intervention," Working papers _002, University of Wisconsin - Madison.
  4. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 33(1), pages 125-132.
  5. Geweke, John, 1989. "Exact predictive densities for linear models with arch disturbances," Journal of Econometrics, Elsevier, vol. 40(1), pages 63-86, January.
  6. Gary Koop & Herman K. van Dijk & Henk Hoek, 1997. "Testing for Integration using Evolving Trend and Seasonals Models: A Bayesian Approach," Tinbergen Institute Discussion Papers 97-078/4, Tinbergen Institute.
  7. John Geweke & Guofu Zhou, 1995. "Measuring the pricing error of the arbitrage pricing theory," Staff Report 189, Federal Reserve Bank of Minneapolis.
  8. Luc Bauwens & Michel Lubrano, 1998. "Bayesian inference on GARCH models using the Gibbs sampler," Econometrics Journal, Royal Economic Society, vol. 1(Conferenc), pages C23-C46.
  9. Shmuel Kandel & Robert McCulloch & Robert F. Stambaugh, 1993. "Bayesian Inference and Portfolio Efficiency," NBER Technical Working Papers 0134, National Bureau of Economic Research, Inc.
  10. Bauwens, Luc & Lubrano, Michel & Richard, Jean-Francois, 2000. "Bayesian Inference in Dynamic Econometric Models," OUP Catalogue, Oxford University Press, number 9780198773139.
  11. Nicholas Barberis, 2000. "Investing for the Long Run when Returns Are Predictable," Journal of Finance, American Finance Association, vol. 55(1), pages 225-264, 02.
  12. Neil Shephard, 2005. "Stochastic Volatility," Economics Papers 2005-W17, Economics Group, Nuffield College, University of Oxford.
  13. Jorion, Philippe, 1986. "Bayes-Stein Estimation for Portfolio Analysis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 21(03), pages 279-292, September.
  14. Bansal, Ravi, 1997. "An Exploration of the Forward Premium Puzzle in Currency Markets," Review of Financial Studies, Society for Financial Studies, vol. 10(2), pages 369-403.
  15. Dale J. Poirier, 1995. "Intermediate Statistics and Econometrics: A Comparative Approach," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262161494, June.
  16. Kleibergen, F & Van Dijk, H K, 1993. "Non-stationarity in GARCH Models: A Bayesian Analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages S41-61, Suppl. De.
  17. Martin D.D. Evans & Karen K. Lewis, 1993. "Do Long-Term Swings in the Dollar Affect Estimates of the Risk Premia?," Working Papers 93-12, New York University, Leonard N. Stern School of Business, Department of Economics.
  18. Nelson, Daniel B., 1990. "Stationarity and Persistence in the GARCH(1,1) Model," Econometric Theory, Cambridge University Press, vol. 6(03), pages 318-334, September.
  19. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-62, November.
  20. Koopman, S.J.M. & Shephard, N. & Doornik, J.A., 1998. "Statistical Algorithms for Models in State Space Using SsfPack 2.2," Discussion Paper 1998-141, Tilburg University, Center for Economic Research.
  21. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comments: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 413-17, October.
  22. repec:dgr:uvatin:2099072 is not listed on IDEAS
  23. Bansal, Ravi & Dahlquist, Magnus, 2000. "The forward premium puzzle: different tales from developed and emerging economies," Journal of International Economics, Elsevier, vol. 51(1), pages 115-144, June.
  24. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 1994. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 371-89, October.
  25. John Geweke, 1998. "Using simulation methods for Bayesian econometric models: inference, development, and communication," Staff Report 249, Federal Reserve Bank of Minneapolis.
  26. McCulloch, Robert & Rossi, Peter E., 1990. "Posterior, predictive, and utility-based approaches to testing the arbitrage pricing theory," Journal of Financial Economics, Elsevier, vol. 28(1-2), pages 7-38.
  27. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
  28. Fama, Eugene F, 1991. " Efficient Capital Markets: II," Journal of Finance, American Finance Association, vol. 46(5), pages 1575-617, December.
  29. Carter, C.K. & Kohn, R., . "Markov Chain Monte Carlo in Conditionally Gaussian State Space Models," Statistics Working Paper _003, Australian Graduate School of Management.
  30. McCulloch, Robert & Rossi, Peter E., 1991. "A bayesian approach to testing the arbitrage pricing theory," Journal of Econometrics, Elsevier, vol. 49(1-2), pages 141-168.
  31. Mark, Nelson C, 1995. "Exchange Rates and Fundamentals: Evidence on Long-Horizon Predictability," American Economic Review, American Economic Association, vol. 85(1), pages 201-18, March.
  32. Engel, Charles & Hamilton, James D, 1990. "Long Swings in the Dollar: Are They in the Data and Do Markets Know It?," American Economic Review, American Economic Association, vol. 80(4), pages 689-713, September.
  33. Stephen J. Taylor, 1994. "Modeling Stochastic Volatility: A Review And Comparative Study," Mathematical Finance, Wiley Blackwell, vol. 4(2), pages 183-204.
  34. Gary Koop & Herman K. van Dijk, 1999. "Testing for Integration using Evolving Trend and Seasonals Models: A Bayesian Approach," Tinbergen Institute Discussion Papers 99-072/4, Tinbergen Institute.
  35. Jorion, Philippe, 1985. "International Portfolio Diversification with Estimation Risk," The Journal of Business, University of Chicago Press, vol. 58(3), pages 259-78, July.
  36. John Geweke, 1991. "Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments," Staff Report 148, Federal Reserve Bank of Minneapolis.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ems:eureir:1605. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (RePub)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.