IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Daily Exchange Rate Behaviour and Hedging of Currency Risk

  • Charles S. Bos

    (Erasmus University Rotterdam)

  • Ronald J. Mahieu

    (Erasmus University Rotterdam)

  • Herman K. van Dijk

    (Erasmus University Rotterdam)

Exchange rates typically exhibit time-varying patterns in both means and variances. The histograms of such series indicate heavy tails. In this paper we construct models which enable a decision-maker to analyze the implications of such time series patterns for currency risk management. Our approach is Bayesian where extensive use is made of Markov chain Monte Carlo methods. The effects of several model characteristics (unit roots, GARCH, stochastic volatility, heavy tailed disturbance densities) are investigated in relation to the hedging decision strategies. Consequently, we can make a distinction between statistical relevance of model specifications, and the economic consequences from a risk management point of view. The empirical results suggest that econometric modelling of heavy tails and time-varying means and variances pays off compared to a efficient markets model. The different ways to measure persistence and changing volatilities appear to strongly influence the hedging decision the investor faces.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: main text
Download Restriction: no

Paper provided by Econometric Society in its series Econometric Society World Congress 2000 Contributed Papers with number 0504.

in new window

Date of creation: 01 Aug 2000
Date of revision:
Handle: RePEc:ecm:wc2000:0504
Contact details of provider: Phone: 1 212 998 3820
Fax: 1 212 995 4487
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
  2. Jorion, Philippe, 1986. "Bayes-Stein Estimation for Portfolio Analysis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 21(03), pages 279-292, September.
  3. John F. Geweke & Guofu Zhou, 1995. "Measuring the pricing error of the arbitrage pricing theory," Staff Report 189, Federal Reserve Bank of Minneapolis.
  4. Kandel, Shmuel & McCulloch, Robert & Stambaugh, Robert F, 1995. "Bayesian Inference and Portfolio Efficiency," Review of Financial Studies, Society for Financial Studies, vol. 8(1), pages 1-53.
  5. Bansal, Ravi & Dahlquist, Magnus, 1999. "The Forward Premium Puzzle: Different Tales from Developed and Emerging Economies," CEPR Discussion Papers 2169, C.E.P.R. Discussion Papers.
  6. Siem Jan Koopman & Neil Shephard & Jurgen A. Doornik, 1999. "Statistical algorithms for models in state space using SsfPack 2.2," Econometrics Journal, Royal Economic Society, vol. 2(1), pages 107-160.
  7. Sangjoon Kim & Neil Shephard, 1994. "Stochastic volatility: likelihood inference and comparison with ARCH models," Economics Papers 3., Economics Group, Nuffield College, University of Oxford.
  8. Evans, Martin D D & Lewis, Karen K, 1995. "Do Long-Term Swings in the Dollar Affect Estimates of the Risk Premia?," Review of Financial Studies, Society for Financial Studies, vol. 8(3), pages 709-42.
  9. Mark, Nelson C, 1995. "Exchange Rates and Fundamentals: Evidence on Long-Horizon Predictability," American Economic Review, American Economic Association, vol. 85(1), pages 201-18, March.
  10. Kleibergen, F & Van Dijk, H K, 1993. "Non-stationarity in GARCH Models: A Bayesian Analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages S41-61, Suppl. De.
  11. Bauwens, Luc & Lubrano, Michel & Richard, Jean-Francois, 2000. "Bayesian Inference in Dynamic Econometric Models," OUP Catalogue, Oxford University Press, number 9780198773139.
  12. Jorion, Philippe, 1985. "International Portfolio Diversification with Estimation Risk," The Journal of Business, University of Chicago Press, vol. 58(3), pages 259-78, July.
  13. Luc Bauwens & Michel Lubrano, 1998. "Bayesian inference on GARCH models using the Gibbs sampler," Econometrics Journal, Royal Economic Society, vol. 1(Conferenc), pages C23-C46.
  14. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-62, November.
  15. Koop, Gary & Dijk, Herman K. Van, 2000. "Testing for integration using evolving trend and seasonals models: A Bayesian approach," Journal of Econometrics, Elsevier, vol. 97(2), pages 261-291, August.
  16. LeBaron, Blake, 1999. "Technical trading rule profitability and foreign exchange intervention," Journal of International Economics, Elsevier, vol. 49(1), pages 125-143, October.
  17. Nicholas Barberis, 2000. "Investing for the Long Run when Returns Are Predictable," Journal of Finance, American Finance Association, vol. 55(1), pages 225-264, 02.
  18. Bansal, Ravi, 1997. "An Exploration of the Forward Premium Puzzle in Currency Markets," Review of Financial Studies, Society for Financial Studies, vol. 10(2), pages 369-403.
  19. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 33(1), pages 125-132.
  20. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
  21. John F. Geweke, 1991. "Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments," Staff Report 148, Federal Reserve Bank of Minneapolis.
  22. John Geweke, 1999. "Using simulation methods for bayesian econometric models: inference, development,and communication," Econometric Reviews, Taylor & Francis Journals, vol. 18(1), pages 1-73.
  23. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comments: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 413-17, October.
  24. Fama, Eugene F, 1991. " Efficient Capital Markets: II," Journal of Finance, American Finance Association, vol. 46(5), pages 1575-617, December.
  25. Carter, C.K. & Kohn, R., . "Markov Chain Monte Carlo in Conditionally Gaussian State Space Models," Statistics Working Paper _003, Australian Graduate School of Management.
  26. Geweke, John, 1989. "Exact predictive densities for linear models with arch disturbances," Journal of Econometrics, Elsevier, vol. 40(1), pages 63-86, January.
  27. McCulloch, Robert & Rossi, Peter E., 1990. "Posterior, predictive, and utility-based approaches to testing the arbitrage pricing theory," Journal of Financial Economics, Elsevier, vol. 28(1-2), pages 7-38.
  28. Engel, Charles & Hamilton, James D, 1990. "Long Swings in the Dollar: Are They in the Data and Do Markets Know It?," American Economic Review, American Economic Association, vol. 80(4), pages 689-713, September.
  29. Neil Shephard, 2005. "Stochastic volatility," Economics Series Working Papers 2005-W17, University of Oxford, Department of Economics.
  30. Stephen J. Taylor, 1994. "Modeling Stochastic Volatility: A Review And Comparative Study," Mathematical Finance, Wiley Blackwell, vol. 4(2), pages 183-204.
  31. Nelson, Daniel B., 1990. "Stationarity and Persistence in the GARCH(1,1) Model," Econometric Theory, Cambridge University Press, vol. 6(03), pages 318-334, September.
  32. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
  33. McCulloch, Robert & Rossi, Peter E., 1991. "A bayesian approach to testing the arbitrage pricing theory," Journal of Econometrics, Elsevier, vol. 49(1-2), pages 141-168.
  34. Dale J. Poirier, 1995. "Intermediate Statistics and Econometrics: A Comparative Approach," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262161494, June.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ecm:wc2000:0504. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.