IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Statistical algorithms for models in state space using SsfPack 2.2

  • SIEM JAN KOOPMAN
  • NEIL SHEPHARD
  • JURGEN A. DOORNIK

This paper discusses and documents the algorithms of SsfPack 2.2. SsfPack is a suite of C routines for carrying out computations involving the statistical analysis of univariate and multivariate models in state space form. The emphasis is on documenting the link we have made to the Ox computing environment. SsfPack allows for a full range of different state space forms: from a simple time-invariant model to a complicated time-varying model. Functions can be used which put standard models such as ARMA and cubic spline models in state space form. Basic functions are available for filtering, moment smoothing and simulation smoothing. Ready-to-use functions are provided for standard tasks such as likelihood evaluation, forecasting and signal extraction. We show that SsfPack can be eas-ily used for implementing, fitting and analysing Gaussian models relevant to many areas of econometrics and statistics. Some Gaussian illustrations are given.

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below under "Related research" whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.

Article provided by Royal Economic Society in its journal The Econometrics Journal.

Volume (Year): 2 (1999)
Issue (Month): 1 ()
Pages: 107-160

as
in new window

Handle: RePEc:ect:emjrnl:v:2:y:1999:i:1:p:107-160
Contact details of provider: Postal: Office of the Secretary-General, School of Economics and Finance, University of St. Andrews, St. Andrews, Fife, KY16 9AL, UK
Phone: +44 1334 462479
Web page: http://www.res.org.uk/
Email:


More information through EDIRC

Order Information: Web: http://www.ectj.org

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1996. "Stochastic Volatility: Likelihood Inference And Comparison With Arch Models," Econometrics 9610002, EconWPA.
  2. Chib, Siddhartha & Greenberg, Edward, 1996. "Markov Chain Monte Carlo Simulation Methods in Econometrics," Econometric Theory, Cambridge University Press, vol. 12(03), pages 409-431, August.
  3. Balke, Nathan S, 1993. "Detecting Level Shifts in Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(1), pages 81-92, January.
  4. Harvey, Andrew C & Koopman, Siem Jan, 1992. "Diagnostic Checking of Unobserved-Components Time Series Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 377-89, October.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ect:emjrnl:v:2:y:1999:i:1:p:107-160. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing)

or (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.