IDEAS home Printed from https://ideas.repec.org/a/wly/japmet/v29y2014i7p1031-1052.html
   My bibliography  Save this article

Rare Shocks, Great Recessions

Author

Listed:
  • Vasco Cúrdia
  • Marco Del Negro
  • Daniel L. Greenwald

Abstract

We estimate a DSGE (dynamic stochastic general equilibrium) model where rare large shocks can occur, by replacing the commonly used Gaussian assumption with a Student's t‐distribution. Results from the Smets and Wouters (American Economic Review 2007; 97: 586–606) model estimated on the usual set of macroeconomic time series over the 1964–2011 period indicate that (i) the Student's t specification is strongly favored by the data even when we allow for low‐frequency variation in the volatility of the shocks, and (ii)) the estimated degrees of freedom are quite low for several shocks that drive US business cycles, implying an important role for rare large shocks. This result holds even if we exclude the Great Recession period from the sample. We also show that inference about low‐frequency changes in volatility—and, in particular, inference about the magnitude of Great Moderation—is different once we allow for fat tails. Copyright © 2014 John Wiley & Sons, Ltd.

Suggested Citation

  • Vasco Cúrdia & Marco Del Negro & Daniel L. Greenwald, 2014. "Rare Shocks, Great Recessions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(7), pages 1031-1052, November.
  • Handle: RePEc:wly:japmet:v:29:y:2014:i:7:p:1031-1052
    DOI: 10.1002/jae.2395
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/jae.2395
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Chib, Siddhartha & Greenberg, Edward, 1994. "Bayes inference in regression models with ARMA (p, q) errors," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 183-206.
    2. Ascari, Guido & Fagiolo, Giorgio & Roventini, Andrea, 2015. "Fat-Tail Distributions And Business-Cycle Models," Macroeconomic Dynamics, Cambridge University Press, vol. 19(2), pages 465-476, March.
    3. Alejandro Justiniano & Giorgio E. Primiceri, 2008. "The Time-Varying Volatility of Macroeconomic Fluctuations," American Economic Review, American Economic Association, vol. 98(3), pages 604-641, June.
    4. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 361-393.
    5. Zheng Liu & Daniel F. Waggoner & Tao Zha, 2011. "Sources of macroeconomic fluctuations: A regime‐switching DSGE approach," Quantitative Economics, Econometric Society, vol. 2(2), pages 251-301, July.
    6. Siddhartha Chib & Srikanth Ramamurthy, 2014. "DSGE Models with Student- t Errors," Econometric Reviews, Taylor & Francis Journals, vol. 33(1-4), pages 152-171, June.
    7. Charles S. Bos & Ronald J. Mahieu & Herman K. Van Dijk, 2000. "Daily exchange rate behaviour and hedging of currency risk," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(6), pages 671-696.
    8. Geweke, J, 1993. "Bayesian Treatment of the Independent Student- t Linear Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages 19-40, Suppl. De.
    9. J. Durbin, 2002. "A simple and efficient simulation smoother for state space time series analysis," Biometrika, Biometrika Trust, vol. 89(3), pages 603-616, August.
    10. Rochelle M. Edge & Refet S. Gurkaynak, 2010. "How Useful Are Estimated DSGE Model Forecasts for Central Bankers?," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 41(2 (Fall)), pages 209-259.
    11. Frank Smets & Raf Wouters, 2003. "An Estimated Dynamic Stochastic General Equilibrium Model of the Euro Area," Journal of the European Economic Association, MIT Press, vol. 1(5), pages 1123-1175, September.
    12. Paap, Richard, 2007. "John Geweke, Contemporary Bayesian Econometrics and Statistics, Wiley, New Jersey (2005) (Hardcover, 300 pages) ISBN: 0-471-67932-1," International Journal of Forecasting, Elsevier, vol. 23(3), pages 529-531.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    Lists

    This item is featured on the following reading lists or Wikipedia pages:
    1. Rare Shocks, Great Recessions (JAE 2014) in ReplicationWiki

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:japmet:v:29:y:2014:i:7:p:1031-1052. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley Content Delivery). General contact details of provider: http://www.interscience.wiley.com/jpages/0883-7252/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.