IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Bayesian Estimation Of The Gaussian Mixture Garch Model

  • María Concepcion Ausin

    ()

  • Pedro Galeano

    ()

In this paper, we perform Bayesian inference and prediction for a GARCH model where the innovations are assumed to follow a mixture of two Gaussian distributions. This GARCH model can capture the patterns usually exhibited by many financial time series such as volatility clustering, large kurtosis and extreme observations. A Griddy-Gibbs sampler implementation is proposed for parameter estimation and volatility prediction. The method is illustrated using the Swiss Market Index.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://docubib.uc3m.es/WORKINGPAPERS/WS/ws053605.pdf
Download Restriction: no

Paper provided by Universidad Carlos III, Departamento de Estadística y Econometría in its series Statistics and Econometrics Working Papers with number ws053605.

as
in new window

Length:
Date of creation: May 2005
Date of revision:
Handle: RePEc:cte:wsrepe:ws053605
Contact details of provider: Postal: C/ Madrid, 126 - 28903 GETAFE (MADRID)
Phone: 6249847
Fax: 6249849
Web page: http://portal.uc3m.es/portal/page/portal/dpto_estadistica

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Bauwens, L. & Lubrano, M., . "Bayesian inference on GARCH models using the Gibbs sampler," CORE Discussion Papers RP -1307, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  2. Engle, Robert F & Gonzalez-Rivera, Gloria, 1991. "Semiparametric ARCH Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(4), pages 345-59, October.
  3. Neil Shephard, 2005. "Stochastic Volatility," Economics Papers 2005-W17, Economics Group, Nuffield College, University of Oxford.
  4. Vrontos, I D & Dellaportas, P & Politis, D N, 2000. "Full Bayesian Inference for GARCH and EGARCH Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(2), pages 187-98, April.
  5. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
  6. Geweke, John, 1989. "Exact predictive densities for linear models with arch disturbances," Journal of Econometrics, Elsevier, vol. 40(1), pages 63-86, January.
  7. Haas, Markus & Mittnik, Stefan & Paolella, Marc S., 2002. "Mixed normal conditional heteroskedasticity," CFS Working Paper Series 2002/10, Center for Financial Studies (CFS).
  8. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
  9. Nakatsuma, Teruo, 2000. "Bayesian analysis of ARMA-GARCH models: A Markov chain sampling approach," Journal of Econometrics, Elsevier, vol. 95(1), pages 57-69, March.
  10. Kleibergen, F & Van Dijk, H K, 1993. "Non-stationarity in GARCH Models: A Bayesian Analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages S41-61, Suppl. De.
  11. Raggi, Davide & Bordignon, Silvano, 2006. "Comparing stochastic volatility models through Monte Carlo simulations," Computational Statistics & Data Analysis, Elsevier, vol. 50(7), pages 1678-1699, April.
  12. BAUWENS , Luc & LUBRANO, Michel, . "Bayesian option pricing using asymmetric GARCH models," CORE Discussion Papers RP -1569, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  13. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
  14. Emese Lazar & Carol Alexander, 2006. "Normal mixture GARCH(1,1): applications to exchange rate modelling," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(3), pages 307-336.
  15. John F. Geweke, 1994. "Bayesian comparison of econometric models," Working Papers 532, Federal Reserve Bank of Minneapolis.
  16. John Geweke, 1991. "Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments," Staff Report 148, Federal Reserve Bank of Minneapolis.
  17. Bai, Xuezheng & Russell, Jeffrey R. & Tiao, George C., 2003. "Kurtosis of GARCH and stochastic volatility models with non-normal innovations," Journal of Econometrics, Elsevier, vol. 114(2), pages 349-360, June.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws053605. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.