IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v5y2008i2p118-127.html
   My bibliography  Save this article

Robustness of the risk-return relationship in the U.S. stock market

Author

Listed:
  • Lanne, Markku
  • Luoto, Jani

Abstract

Using GARCH-in-Mean models, we study the robustness of the risk-return relationship in monthly U.S. stock market returns (1928:1-2004:12) with respect to the specification of the conditional mean equation. The issue is important because in this commonly used framework, unnecessarily including an intercept is known to distort conclusions. The existence of the relationship is relatively robust, but its strength depends on the prior belief concerning the intercept. The latter applies in particular to the first half of the sample, where also the coefficient of the relative risk aversion is smaller and the equity premium greater than in the latter half.

Suggested Citation

  • Lanne, Markku & Luoto, Jani, 2008. "Robustness of the risk-return relationship in the U.S. stock market," Finance Research Letters, Elsevier, vol. 5(2), pages 118-127, June.
  • Handle: RePEc:eee:finlet:v:5:y:2008:i:2:p:118-127
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544-6123(08)00020-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Mehra, Rajnish & Prescott, Edward C., 1985. "The equity premium: A puzzle," Journal of Monetary Economics, Elsevier, vol. 15(2), pages 145-161, March.
    2. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    3. Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2005. "There is a risk-return trade-off after all," Journal of Financial Economics, Elsevier, vol. 76(3), pages 509-548, June.
    4. Eugene F. Fama & Kenneth R. French, 2002. "The Equity Premium," Journal of Finance, American Finance Association, vol. 57(2), pages 637-659, April.
    5. Kleibergen, F & Van Dijk, H K, 1993. "Non-stationarity in GARCH Models: A Bayesian Analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages 41-61, Suppl. De.
    6. Bauwens, L. & Lubrano, M., 1997. "Bayesian Option Pricing Using Asymmetric GARCH," G.R.E.Q.A.M. 97a40, Universite Aix-Marseille III.
    7. Vrontos, I D & Dellaportas, P & Politis, D N, 2000. "Full Bayesian Inference for GARCH and EGARCH Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(2), pages 187-198, April.
    8. Geweke, John, 1989. "Exact predictive densities for linear models with arch disturbances," Journal of Econometrics, Elsevier, vol. 40(1), pages 63-86, January.
    9. Lanne, Markku & Luoto, Jani, 2008. "Robustness of the risk-return relationship in the U.S. stock market," Finance Research Letters, Elsevier, vol. 5(2), pages 118-127, June.
    10. Sylvia Kaufmann & Sylvia Frühwirth‐Schnatter, 2002. "Bayesian analysis of switching ARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 23(4), pages 425-458, July.
    11. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    12. Bauwens, Luc & Lubrano, Michel, 2002. "Bayesian option pricing using asymmetric GARCH models," Journal of Empirical Finance, Elsevier, vol. 9(3), pages 321-342, August.
    13. Merton, Robert C, 1973. "An Intertemporal Capital Asset Pricing Model," Econometrica, Econometric Society, vol. 41(5), pages 867-887, September.
    14. I. D. Vrontos & P. Dellaportas & D. N. Politis, 2003. "A full-factor multivariate GARCH model," Econometrics Journal, Royal Economic Society, vol. 6(2), pages 312-334, December.
    15. Luc Bauwens & Michel Lubrano, 1998. "Bayesian inference on GARCH models using the Gibbs sampler," Econometrics Journal, Royal Economic Society, vol. 1(Conferenc), pages 23-46.
    16. Geweke, J, 1993. "Bayesian Treatment of the Independent Student- t Linear Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages 19-40, Suppl. De.
    17. Luc Bauwens & Arie Preminger & Jeroen V.K. Rombouts, 2006. "Regime switching GARCH models," Cahiers de recherche 06-08, HEC Montréal, Institut d'économie appliquée.
    18. Lanne, Markku & Saikkonen, Pentti, 2006. "Why is it so difficult to uncover the risk-return tradeoff in stock returns?," Economics Letters, Elsevier, vol. 92(1), pages 118-125, July.
    19. Engle, Robert F & Lilien, David M & Robins, Russell P, 1987. "Estimating Time Varying Risk Premia in the Term Structure: The Arch-M Model," Econometrica, Econometric Society, vol. 55(2), pages 391-407, March.
    20. Nakatsuma, Teruo, 2000. "Bayesian analysis of ARMA-GARCH models: A Markov chain sampling approach," Journal of Econometrics, Elsevier, vol. 95(1), pages 57-69, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ardia, David & Hoogerheide, Lennart F., 2010. "Efficient Bayesian estimation and combination of GARCH-type models," MPRA Paper 22919, University Library of Munich, Germany.
    2. Lanne, Markku & Luoto, Jani, 2008. "Robustness of the risk-return relationship in the U.S. stock market," Finance Research Letters, Elsevier, vol. 5(2), pages 118-127, June.
    3. Richard A. Michelfelder, 2014. "Asset characteristics of solar renewable energy certificates: market solution to encourage environmental sustainability," Journal of Sustainable Finance & Investment, Taylor & Francis Journals, vol. 4(3), pages 280-296, July.
    4. Jiranyakul, Komain, 2011. "On the Risk-Return Tradeoff in the Stock Exchange of Thailand: New Evidence," MPRA Paper 45583, University Library of Munich, Germany.
    5. Mohanty, Roshni & P, Srinivasan, 2014. "The Time-Varying Risk and Return Trade Off in Indian Stock Markets," MPRA Paper 55660, University Library of Munich, Germany.
    6. Michelfelder, Richard A., 2015. "Empirical analysis of the generalized consumption asset pricing model: Estimating the cost of capital," Journal of Economics and Business, Elsevier, vol. 80(C), pages 37-50.
    7. Pauline Ahern & Frank Hanley & Richard Michelfelder, 2011. "New approach to estimating the cost of common equity capital for public utilities," Journal of Regulatory Economics, Springer, vol. 40(3), pages 261-278, December.
    8. Arshanapalli, Bala & Fabozzi, Frank J. & Nelson, William, 2013. "The role of jump dynamics in the risk–return relationship," International Review of Financial Analysis, Elsevier, vol. 29(C), pages 212-218.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ardia, David & Hoogerheide, Lennart F., 2010. "Efficient Bayesian estimation and combination of GARCH-type models," MPRA Paper 22919, University Library of Munich, Germany.
    2. Miazhynskaia, Tatiana & Fruhwirth-Schnatter, Sylvia & Dorffner, Georg, 2006. "Bayesian testing for non-linearity in volatility modeling," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 2029-2042, December.
    3. Ausin, Maria Concepcion & Galeano, Pedro, 2007. "Bayesian estimation of the Gaussian mixture GARCH model," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2636-2652, February.
    4. Tatiana Miazhynskaia & Georg Dorffner, 2006. "A comparison of Bayesian model selection based on MCMC with an application to GARCH-type models," Statistical Papers, Springer, vol. 47(4), pages 525-549, October.
    5. Audrone Virbickaite & M. Concepción Ausín & Pedro Galeano, 2015. "Bayesian Inference Methods For Univariate And Multivariate Garch Models: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 29(1), pages 76-96, February.
    6. Jiranyakul, Komain, 2011. "On the Risk-Return Tradeoff in the Stock Exchange of Thailand: New Evidence," MPRA Paper 45583, University Library of Munich, Germany.
    7. Tim Bollerslev & Ray Y. Chou & Narayanan Jayaraman & Kenneth F. Kroner - L, 1991. "es modéles ARCH en finance : un point sur la théorie et les résultats empiriques," Annals of Economics and Statistics, GENES, issue 24, pages 1-59.
    8. Font, Begoña, 1998. "Modelización de series temporales financieras. Una recopilación," DES - Documentos de Trabajo. Estadística y Econometría. DS 3664, Universidad Carlos III de Madrid. Departamento de Estadística.
    9. Dimitrios Koutmos, 2015. "Is there a Positive Risk†Return Tradeoff? A Forward†Looking Approach to Measuring the Equity Premium," European Financial Management, European Financial Management Association, vol. 21(5), pages 974-1013, November.
    10. Nyberg, Henri, 2010. "QR-GARCH-M Model for Risk-Return Tradeoff in U.S. Stock Returns and Business Cycles," MPRA Paper 23724, University Library of Munich, Germany.
    11. Giannikis, D. & Vrontos, I.D. & Dellaportas, P., 2008. "Modelling nonlinearities and heavy tails via threshold normal mixture GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1549-1571, January.
    12. Jacek Osiewalski & Mateusz Pipień, 2004. "Bayesian Pricing of an European Call Option Using a GARCH Model with Asymmetries," FindEcon Chapters: Forecasting Financial Markets and Economic Decision-Making, in: Władysław Milo & Piotr Wdowiński (ed.), Acta Universitatis Lodziensis. Folia Oeconomica nr 177/2004 - Forecasting and Decision-Making in Financial Markets, edition 1, volume 127, chapter 14, pages 219-238, University of Lodz.
    13. Antonio Díaz & Carlos Esparcia, 2021. "Dynamic optimal portfolio choice under time-varying risk aversion," International Economics, CEPII research center, issue 166, pages 1-22.
    14. Ehlers, Ricardo S., 2012. "Computational tools for comparing asymmetric GARCH models via Bayes factors," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(5), pages 858-867.
    15. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    16. repec:awi:wpaper:0473 is not listed on IDEAS
    17. Oscar Andrés Espinosa Acuna & Paola Andrea Vaca González, 2017. "Ajuste de modelos garch clásico y bayesiano con innovaciones t—student para el índice COLCAP," Revista de Economía del Caribe 17172, Universidad del Norte.
    18. Manabu Asai & Michael McAleer, 2022. "Bayesian Analysis of Realized Matrix-Exponential GARCH Models," Computational Economics, Springer;Society for Computational Economics, vol. 59(1), pages 103-123, January.
    19. Jouchi Nakajima, 2008. "EGARCH and Stochastic Volatility: Modeling Jumps and Heavy-tails for Stock Returns," IMES Discussion Paper Series 08-E-23, Institute for Monetary and Economic Studies, Bank of Japan.
    20. Charles S. Bos & Ronald J. Mahieu & Herman K. Van Dijk, 2000. "Daily exchange rate behaviour and hedging of currency risk," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(6), pages 671-696.
    21. Naqi Shah, Sadia & Qayyum, Abdul, 2016. "Analyse Risk-Return Paradox: Evidence from Electricity Sector of Pakistan," MPRA Paper 85528, University Library of Munich, Germany.

    More about this item

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:5:y:2008:i:2:p:118-127. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.