IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

A full-factor multivariate GARCH model

  • I. D. Vrontos
  • P. Dellaportas
  • D. N. Politis

A new multivariate time series model with time varying conditional variances and covariances is presented and analysed. A complete analysis of the proposed model is presented consisting of parameter estimation, model selection and volatility prediction. Classical and Bayesian techniques are used for the estimation of the model parameters. It turns out that the construction of our proposed model allows easy maximum likelihood estimation and construction of well-mixing Markov chain Monte Carlo (MCMC) algorithms. Bayesian model selection is addressed using MCMC model composition. The problem of accounting for model uncertainty is considered using Bayesian model averaging. We provide implementation details and illustrations using daily rates of return on eight stocks of the US market. Copyright Royal Economic Society, 2003

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: link to full text
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Royal Economic Society in its journal The Econometrics Journal.

Volume (Year): 6 (2003)
Issue (Month): 2 (December)
Pages: 312-334

in new window

Handle: RePEc:ect:emjrnl:v:6:y:2003:i:2:p:312-334
Contact details of provider: Postal: Office of the Secretary-General, Rm E35, The Bute Building, Westburn Lane, St Andrews, KY16 9AR, UK
Phone: +44 1334 462479
Web page:

More information through EDIRC

Order Information: Web:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ect:emjrnl:v:6:y:2003:i:2:p:312-334. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing)

or (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.