IDEAS home Printed from https://ideas.repec.org/e/pvr10.html
   My authors  Follow this author

Ioannis Vrontos

Personal Details

First Name:Ioannis
Middle Name:
Last Name:Vrontos
Suffix:
RePEc Short-ID:pvr10
http://stat-athens.aueb.gr/~vrontos/

Affiliation

Athens University of Economics and Business (AUEB)

Athens, Greece
http://www.aueb.gr/

: +30 1 8203250
+301 8228419
76, Patission Street, Athens 104 34
RePEc:edi:auebugr (more details at EDIRC)

Research output

as
Jump to: Working papers Articles

Working papers

  1. Loukia Meligkotsidou & Elias Tzavalis & Ioannis D. Vrontos, 2004. "A Bayesian Analysis of Unit Roots and Structural Breaks in the Level and the Error Variance of Autoregressive Models," Working Papers 514, Queen Mary University of London, School of Economics and Finance.

Articles

  1. Giannikis, D. & Vrontos, I.D. & Dellaportas, P., 2008. "Modelling nonlinearities and heavy tails via threshold normal mixture GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1549-1571, January.
  2. Giamouridis, Daniel & Vrontos, Ioannis D., 2007. "Hedge fund portfolio construction: A comparison of static and dynamic approaches," Journal of Banking & Finance, Elsevier, vol. 31(1), pages 199-217, January.
  3. P. Dellaportas & I. D. Vrontos, 2007. "Modelling volatility asymmetries: a Bayesian analysis of a class of tree structured multivariate GARCH models," Econometrics Journal, Royal Economic Society, vol. 10(3), pages 503-520, November.
  4. I. D. Vrontos & P. Dellaportas & D. N. Politis, 2003. "A full-factor multivariate GARCH model," Econometrics Journal, Royal Economic Society, vol. 6(2), pages 312-334, December.
  5. Vrontos, I D & Dellaportas, P & Politis, D N, 2000. "Full Bayesian Inference for GARCH and EGARCH Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(2), pages 187-198, April.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Loukia Meligkotsidou & Elias Tzavalis & Ioannis D. Vrontos, 2004. "A Bayesian Analysis of Unit Roots and Structural Breaks in the Level and the Error Variance of Autoregressive Models," Working Papers 514, Queen Mary University of London, School of Economics and Finance.

    Cited by:

    1. Yiannis Karavias & Elias Tzavalis, "undated". "The power performance of fixed-T panel unit root tests allowing for structural breaks," Discussion Papers 13/01, University of Nottingham, Granger Centre for Time Series Econometrics.

Articles

  1. Giannikis, D. & Vrontos, I.D. & Dellaportas, P., 2008. "Modelling nonlinearities and heavy tails via threshold normal mixture GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1549-1571, January.

    Cited by:

    1. Haas Markus, 2010. "Skew-Normal Mixture and Markov-Switching GARCH Processes," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(4), pages 1-56, September.
    2. Haas, Markus & Mittnik, Stefan & Paolella, Marc S., 2008. "Asymmetric multivariate normal mixture GARCH," CFS Working Paper Series 2008/07, Center for Financial Studies (CFS).
    3. Stéphane Auray & Aurélien Eyquem & Frédéric Jouneau-Sion, 2014. "Modelling Tails of Aggregated Economic Processes in a Stochastic Growth Model," Post-Print halshs-00995703, HAL.
    4. Jeroen V.K. Rombouts & Lars Stentoft, 2009. "Bayesian Option Pricing Using Mixed Normal Heteroskedasticity Models," CREATES Research Papers 2009-07, Department of Economics and Business Economics, Aarhus University.
    5. Nomikos, Nikos K. & Pouliasis, Panos K., 2011. "Forecasting petroleum futures markets volatility: The role of regimes and market conditions," Energy Economics, Elsevier, vol. 33(2), pages 321-337, March.
    6. Giannikis, Dimitrios & Vrontos, Ioannis D., 2011. "A Bayesian approach to detecting nonlinear risk exposures in hedge fund strategies," Journal of Banking & Finance, Elsevier, vol. 35(6), pages 1399-1414, June.
    7. Francq, Christian & ZakoI¨an, Jean-Michel, 2008. "Deriving the autocovariances of powers of Markov-switching GARCH models, with applications to statistical inference," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3027-3046, February.
    8. Yin-Wong Cheung & Sang-Kuck Chung, 2011. "A Long Memory Model with Normal Mixture GARCH," Computational Economics, Springer;Society for Computational Economics, vol. 38(4), pages 517-539, November.

  2. Giamouridis, Daniel & Vrontos, Ioannis D., 2007. "Hedge fund portfolio construction: A comparison of static and dynamic approaches," Journal of Banking & Finance, Elsevier, vol. 31(1), pages 199-217, January.

    Cited by:

    1. Haas, Markus, 2010. "Covariance forecasts and long-run correlations in a Markov-switching model for dynamic correlations," Finance Research Letters, Elsevier, vol. 7(2), pages 86-97, June.
    2. Virbickaitė, Audronė & Ausín, M. Concepción & Galeano, Pedro, 2016. "A Bayesian non-parametric approach to asymmetric dynamic conditional correlation model with application to portfolio selection," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 814-829.
    3. Ding, Bill & Shawky, Hany A. & Tian, Jianbo, 2009. "Liquidity shocks, size and the relative performance of hedge fund strategies," Journal of Banking & Finance, Elsevier, vol. 33(5), pages 883-891, May.
    4. Bodnar, Taras & Mazur, Stepan & Podgórski, Krzysztof, 2016. "Singular inverse Wishart distribution and its application to portfolio theory," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 314-326.
    5. Serge Darolles & Jeremy Dudek & Gaëlle Le Fol, 2014. "Liquidity risk and contagion for liquid funds," Post-Print hal-01632776, HAL.
    6. Balcılar, Mehmet & Demirer, Rıza & Hammoudeh, Shawkat, 2015. "Regional and global spillovers and diversification opportunities in the GCC equity sectors," Emerging Markets Review, Elsevier, vol. 24(C), pages 160-187.
    7. Vrontos, Spyridon D. & Vrontos, Ioannis D. & Giamouridis, Daniel, 2008. "Hedge fund pricing and model uncertainty," Journal of Banking & Finance, Elsevier, vol. 32(5), pages 741-753, May.
    8. Meligkotsidou, Loukia & Vrontos, Ioannis D., 2008. "Detecting structural breaks and identifying risk factors in hedge fund returns: A Bayesian approach," Journal of Banking & Finance, Elsevier, vol. 32(11), pages 2471-2481, November.
    9. El Kalak, Izidin & Azevedo, Alcino & Hudson, Robert, 2016. "Reviewing the hedge funds literature I: Hedge funds and hedge funds' managerial characteristics," International Review of Financial Analysis, Elsevier, vol. 48(C), pages 85-97.
    10. Adam, Alexandre & Houkari, Mohamed & Laurent, Jean-Paul, 2008. "Spectral risk measures and portfolio selection," Journal of Banking & Finance, Elsevier, vol. 32(9), pages 1870-1882, September.
    11. Serge Darolles & Jeremy Dudek & Gaëlle Le Fol, 2012. "Liquidity Contagion. The Emerging Sovereign Debt Markets example," Post-Print hal-01632803, HAL.
    12. Wan, Yang & Clutter, Michael L. & Mei, Bin & Siry, Jacek P., 2015. "Assessing the role of U.S. timberland assets in a mixed portfolio under the mean-conditional value at risk framework," Forest Policy and Economics, Elsevier, vol. 50(C), pages 118-126.
    13. Harris, Richard D.F. & Mazibas, Murat, 2013. "Dynamic hedge fund portfolio construction: A semi-parametric approach," Journal of Banking & Finance, Elsevier, vol. 37(1), pages 139-149.
    14. Víctor M. Adame-García & Fernando Fernández-Rodríguez & Simón Sosvilla-Rivero, "undated". "Portfolios in the Ibex 35 index: Alternative methods to the traditional framework, a comparative with the naive diversification in a pre- and post- crisis context," Documentos de Trabajo del ICAE 2015-07, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico, revised Jun 2015.
    15. Meligkotsidou, Loukia & Vrontos, Ioannis D. & Vrontos, Spyridon D., 2009. "Quantile regression analysis of hedge fund strategies," Journal of Empirical Finance, Elsevier, vol. 16(2), pages 264-279, March.
    16. Víctor Adame-García & Fernando Fernández-Rodríguez & Simón Sosvilla-Rivero, 2017. "“Resolution of optimization problems and construction of efficient portfolios: An application to the Euro Stoxx 50 index"," IREA Working Papers 201702, University of Barcelona, Research Institute of Applied Economics, revised Feb 2017.
    17. Harris, Richard D.F. & Mazibas, Murat, 2010. "Dynamic hedge fund portfolio construction," International Review of Financial Analysis, Elsevier, vol. 19(5), pages 351-357, December.
    18. Kritski, Oleg & Ulyanova, Marina, 2007. "Assessment of Multivariate Financial Risks of a Stock Share Portfolio," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 8(4), pages 3-17.
    19. Elyasiani, Elyas & Mansur, Iqbal, 2017. "Hedge fund return, volatility asymmetry, and systemic effects: A higher-moment factor-EGARCH model," Journal of Financial Stability, Elsevier, vol. 28(C), pages 49-65.
    20. Wegener, Christian & von Nitzsch, Rüdiger & Cengiz, Cetin, 2010. "An advanced perspective on the predictability in hedge fund returns," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2694-2708, November.
    21. Dudek, Jérémy, 2013. "Illiquidité, contagion et risque systémique," Economics Thesis from University Paris Dauphine, Paris Dauphine University, number 123456789/13236 edited by Le Fol, Gaëlle.
    22. Syriopoulos, Theodore & Roumpis, Efthimios, 2009. "Dynamic correlations and volatility effects in the Balkan equity markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(4), pages 565-587, October.

  3. P. Dellaportas & I. D. Vrontos, 2007. "Modelling volatility asymmetries: a Bayesian analysis of a class of tree structured multivariate GARCH models," Econometrics Journal, Royal Economic Society, vol. 10(3), pages 503-520, November.

    Cited by:

    1. Jensen, Mark J. & Maheu, John M., 2013. "Bayesian semiparametric multivariate GARCH modeling," Journal of Econometrics, Elsevier, vol. 176(1), pages 3-17.
    2. Martin Burda & John M. Maheu, 2012. "Bayesian Adaptively Updated Hamiltonian Monte Carlo with an Application to High-Dimensional BEKK GARCH Models," Working Paper series 46_12, Rimini Centre for Economic Analysis.
    3. Vrontos, Spyridon D. & Vrontos, Ioannis D. & Giamouridis, Daniel, 2008. "Hedge fund pricing and model uncertainty," Journal of Banking & Finance, Elsevier, vol. 32(5), pages 741-753, May.
    4. Martin Burda & John Maheu, 2011. "Bayesian Adaptive Hamiltonian Monte Carlo with an Application to High-Dimensional BEKK GARCH Models," Working Papers tecipa-438, University of Toronto, Department of Economics.
    5. Meligkotsidou, Loukia & Vrontos, Ioannis D. & Vrontos, Spyridon D., 2009. "Quantile regression analysis of hedge fund strategies," Journal of Empirical Finance, Elsevier, vol. 16(2), pages 264-279, March.
    6. Giannikis, D. & Vrontos, I.D. & Dellaportas, P., 2008. "Modelling nonlinearities and heavy tails via threshold normal mixture GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1549-1571, January.

  4. I. D. Vrontos & P. Dellaportas & D. N. Politis, 2003. "A full-factor multivariate GARCH model," Econometrics Journal, Royal Economic Society, vol. 6(2), pages 312-334, December.

    Cited by:

    1. Galeano San Miguel, Pedro & Ausín Olivera, María Concepción & Nguyen, Hoang, 2017. "Parallel Bayesian Inference for High Dimensional Dynamic Factor Copulas," DES - Working Papers. Statistics and Econometrics. WS 24552, Universidad Carlos III de Madrid. Departamento de Estadística.
    2. Boswijk, H.P. & Weide, R. van der, 2006. "Wake me up before you GO-GARCH," CeNDEF Working Papers 06-13, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    3. Lanne, Markku & Luoto, Jani, 2008. "Robustness of the risk-return relationship in the U.S. stock market," Finance Research Letters, Elsevier, vol. 5(2), pages 118-127, June.
    4. João Caldeira & Guilherme Moura & André A.P. Santos, 2012. "Portfolio optimization using a parsimonious multivariate GARCH model: application to the Brazilian stock market," Economics Bulletin, AccessEcon, vol. 32(3), pages 1848-1857.
    5. Hernandez, Manuel A. & Ibarra, Raul & Trupkin, Danilo R., 2011. "How far do shocks move across borders?: Examining volatility transmission in major agricultural futures markets," IFPRI discussion papers 1109, International Food Policy Research Institute (IFPRI).
    6. Jørgen Vitting Andersen & Ioannis D. Vrontos & Petros Dellaportas & Serge Galam, 2015. "A Socio-Finance Model: Inference and empirical application," Documents de travail du Centre d'Economie de la Sorbonne 15076, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    7. Jensen, Mark J. & Maheu, John M., 2013. "Bayesian semiparametric multivariate GARCH modeling," Journal of Econometrics, Elsevier, vol. 176(1), pages 3-17.
    8. Lanne, Markku & Saikkonen, Pentti, 2005. "A Multivariate Generalized Orthogonal Factor GARCH Model," MPRA Paper 23714, University Library of Munich, Germany.
    9. Silvennoinen, Annastiina & Teräsvirta, Timo, 2007. "Multivariate GARCH models," SSE/EFI Working Paper Series in Economics and Finance 669, Stockholm School of Economics, revised 18 Jan 2008.
    10. Yip, Iris W.H. & So, Mike K.P., 2009. "Simplified specifications of a multivariate generalized autoregressive conditional heteroscedasticity model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(2), pages 327-340.
    11. Guilherme Valle Moura & João Frois Caldeira & André Santos, 2014. "Seleção De Carteiras Utilizando O Modelofama-French-Carhart," Anais do XL Encontro Nacional de Economia [Proceedings of the 40th Brazilian Economics Meeting] 117, ANPEC - Associação Nacional dos Centros de Pósgraduação em Economia [Brazilian Association of Graduate Programs in Economics].
    12. Vozlyublennaia, Nadia & Meshcheryakov, Artem, 2014. "Dynamic correlation structure and security risk," Journal of Economics and Business, Elsevier, vol. 73(C), pages 48-64.
    13. Michael McAleer & Massimiliano Caporin, 2012. "Robust Ranking of Multivariate GARCH Models by Problem Dimension," KIER Working Papers 815, Kyoto University, Institute of Economic Research.
    14. Manuel Hernandez & Raul Ibarra & Danilo Trupkin, 2011. "How far do shocks move across borders?Examining volatility transmission in major agricultural futures markets," Documentos de Trabajo/Working Papers 1109, Facultad de Ciencias Empresariales y Economia. Universidad de Montevideo..
    15. Sébastien Laurent & Jeroen V. K. Rombouts & Francesco Violante, 2012. "On the forecasting accuracy of multivariate GARCH models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 934-955, September.
    16. K. Diamantopoulos & I. Vrontos, 2010. "A Student-t Full Factor Multivariate GARCH Model," Computational Economics, Springer;Society for Computational Economics, vol. 35(1), pages 63-83, January.
    17. Wiper, Michael Peter & Galeano San Miguel, Pedro & García de la Fuente, Cristina, 2014. "Bayesian estimation of a dynamic conditional correlation model with multivariate Skew-Slash innovations," DES - Working Papers. Statistics and Econometrics. WS ws141711, Universidad Carlos III de Madrid. Departamento de Estadística.
    18. Claudio, Morana, 2015. "Semiparametric Estimation of Multivariate GARCH Models," Working Papers 317, University of Milano-Bicocca, Department of Economics, revised 10 Dec 2015.
    19. BAUWENS, Luc & LAURENT, Sébastien & ROMBOUTS, Jeroen, 2003. "Multivariate GARCH models: a survey," CORE Discussion Papers 2003031, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    20. Helmut Lütkepohl, 2012. "Identifying Structural Vector Autoregressions via Changes in Volatility," Discussion Papers of DIW Berlin 1259, DIW Berlin, German Institute for Economic Research.
    21. Caporin, M. & McAleer, M.J., 2011. "Ranking Multivariate GARCH Models by Problem Dimension: An Empirical Evaluation," Econometric Institute Research Papers EI 2011-18, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    22. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," CORE Discussion Papers 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    23. Gian Piero Aielli & Massimiliano Caporin, 2015. "Dynamic Principal Components: a New Class of Multivariate GARCH Models," "Marco Fanno" Working Papers 0193, Dipartimento di Scienze Economiche "Marco Fanno".
    24. Helmut Lütkepohl & Anton Velinov, 2016. "Structural Vector Autoregressions: Checking Identifying Long-Run Restrictions Via Heteroskedasticity," Journal of Economic Surveys, Wiley Blackwell, vol. 30(2), pages 377-392, April.
    25. Skrobotov, Anton & Turuntseva, Marina, 2015. "Theoretical Foundations of SVAR Modeling," Published Papers mak8, Russian Presidential Academy of National Economy and Public Administration.
    26. Lakshina, Valeriya, 2014. "Is it possible to break the «curse of dimensionality»? Spatial specifications of multivariate volatility models," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 36(4), pages 61-78.
    27. Kritski, Oleg & Ulyanova, Marina, 2007. "Assessment of Multivariate Financial Risks of a Stock Share Portfolio," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 8(4), pages 3-17.
    28. García-Ferrer, Antonio & González-Prieto, Ester & Peña, Daniel, 2012. "A conditionally heteroskedastic independent factor model with an application to financial stock returns," International Journal of Forecasting, Elsevier, vol. 28(1), pages 70-93.

  5. Vrontos, I D & Dellaportas, P & Politis, D N, 2000. "Full Bayesian Inference for GARCH and EGARCH Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(2), pages 187-198, April.

    Cited by:

    1. Sofia Anyfantaki & Antonis Demos, 2012. "Estimation and Properties of a Time-Varying EGARCH(1,1) in Mean Model," DEOS Working Papers 1228, Athens University of Economics and Business.
    2. Lanne, Markku & Luoto, Jani, 2008. "Robustness of the risk-return relationship in the U.S. stock market," Finance Research Letters, Elsevier, vol. 5(2), pages 118-127, June.
    3. Miazhynskaia, Tatiana & Fruhwirth-Schnatter, Sylvia & Dorffner, Georg, 2006. "Bayesian testing for non-linearity in volatility modeling," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 2029-2042, December.
    4. Chen, Cathy W.S. & Gerlach, Richard & So, Mike K.P., 2006. "Comparison of nonnested asymmetric heteroskedastic models," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2164-2178, December.
    5. Sarantis Tsiaplias, 2007. "A Metropolis-in-Gibbs Sampler for Estimating Equity Market Factors," Melbourne Institute Working Paper Series wp2007n18, Melbourne Institute of Applied Economic and Social Research, The University of Melbourne.
    6. Chen, Cathy W.S. & Gerlach, Richard H. & Tai, Amanda P.J., 2008. "Testing for nonlinearity in mean and volatility for heteroskedastic models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 489-499.
    7. Y.K. Tse & Xibin Zhang & Jun Yu, 2002. "Estimation of Hyperbolic Diffusion Using MCMC Method," Monash Econometrics and Business Statistics Working Papers 18/02, Monash University, Department of Econometrics and Business Statistics.
    8. David Ardia & Lennart F. Hoogerheide, 2010. "Efficient Bayesian Estimation and Combination of GARCH-Type Models," Tinbergen Institute Discussion Papers 10-046/4, Tinbergen Institute.
    9. Jacek Osiewalski & Mateusz Pipien, 2004. "Bayesian Comparison of Bivariate GARCH Processes in the Presence of an Exogenous Variable," Dynamic Econometric Models, Uniwersytet Mikolaja Kopernika, vol. 6, pages 25-36.
    10. Wintenberger, Olivier, 2013. "Continuous invertibility and stable QML estimation of the EGARCH(1,1) model," MPRA Paper 46027, University Library of Munich, Germany.
    11. Ausin, Maria Concepcion & Galeano, Pedro, 2007. "Bayesian estimation of the Gaussian mixture GARCH model," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2636-2652, February.
    12. Xiaochun Liu, 2016. "Markov switching quantile autoregression," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 70(4), pages 356-395, November.
    13. Wolfgang Aussenegg & Tatiana Miazhynskaia, 2006. "Uncertainty in Value-at-risk Estimates under Parametric and Non-parametric Modeling," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 20(3), pages 243-264, September.
    14. Jun Yu, 2004. "Asymmetric Response of Volatility: Evidence from Stochastic Volatility Models and Realized Volatility," Working Papers 24-2004, Singapore Management University, School of Economics.
    15. K. Diamantopoulos & I. Vrontos, 2010. "A Student-t Full Factor Multivariate GARCH Model," Computational Economics, Springer;Society for Computational Economics, vol. 35(1), pages 63-83, January.
    16. Karlis, Dimitris, 2002. "An EM type algorithm for maximum likelihood estimation of the normal-inverse Gaussian distribution," Statistics & Probability Letters, Elsevier, vol. 57(1), pages 43-52, March.
    17. Munehisa Kasuya & Izumi Takagawa, 2001. "Model Uncertainty of Real Exchange Rate Forecast over Mid-term Horizons," Bank of Japan Working Paper Series Research and Statistics D, Bank of Japan.
    18. Xibin Zhang & Maxwell L. King, 2011. "Bayesian semiparametric GARCH models," Monash Econometrics and Business Statistics Working Papers 24/11, Monash University, Department of Econometrics and Business Statistics.
    19. Caporin, Massimiliano & Pelizzon, Loriana & Ravazzolo, Francesco & Rigobon, Roberto, 2015. "Measuring sovereign contagion in Europe," SAFE Working Paper Series 103, Research Center SAFE - Sustainable Architecture for Finance in Europe, Goethe University Frankfurt.
    20. Chow, William W. & Fung, Michael K., 2008. "Volatility of stock price as predicted by patent data: An MGARCH perspective," Journal of Empirical Finance, Elsevier, vol. 15(1), pages 64-79, January.
    21. Yu Yue & Paul Speckman & Dongchu Sun, 2012. "Priors for Bayesian adaptive spline smoothing," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(3), pages 577-613, June.
    22. So, Mike K.P. & Chen, Cathy W.S. & Lee, Jen-Yu & Chang, Yi-Ping, 2008. "An empirical evaluation of fat-tailed distributions in modeling financial time series," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 77(1), pages 96-108.
    23. Tetsuya Takaishi, 2009. "Markov Chain Monte Carlo on Asymmetric GARCH Model Using the Adaptive Construction Scheme," Papers 0909.1478, arXiv.org.
    24. Xibin Zhang & Maxwell L. King, 2013. "Gaussian kernel GARCH models," Monash Econometrics and Business Statistics Working Papers 19/13, Monash University, Department of Econometrics and Business Statistics.
    25. Norberto Rodríguez, 2000. "Bayesian Model Estimation and Selection for the Weekly Colombian Exchange Rate," BORRADORES DE ECONOMIA 002060, BANCO DE LA REPÚBLICA.
    26. Cathy W. S. Chen & Mike K. P. So & Ming-Tien Chen, 2005. "A Bayesian threshold nonlinearity test for financial time series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(1), pages 61-75.
    27. Tatiana Miazhynskaia & Georg Dorffner, 2006. "A comparison of Bayesian model selection based on MCMC with an application to GARCH-type models," Statistical Papers, Springer, vol. 47(4), pages 525-549, October.
    28. Qiang Xia & Heung Wong & Jinshan Liu & Rubing Liang, 2017. "Bayesian Analysis of Power-Transformed and Threshold GARCH Models: A Griddy-Gibbs Sampler Approach," Computational Economics, Springer;Society for Computational Economics, vol. 50(3), pages 353-372, October.
    29. Zellner, Arnold & Ando, Tomohiro, 2010. "Bayesian and non-Bayesian analysis of the seemingly unrelated regression model with Student-t errors, and its application for forecasting," International Journal of Forecasting, Elsevier, vol. 26(2), pages 413-434, April.
    30. Chun Liu & John M Maheu, 2008. "Forecasting Realized Volatility: A Bayesian Model Averaging Approach," Working Papers tecipa-313, University of Toronto, Department of Economics.
    31. Todd E. Clark & Francesco Ravazzolo, 2012. "The macroeconomic forecasting performance of autoregressive models with alternative specifications of time-varying volatility," Working Paper 2012/09, Norges Bank.
    32. Giannikis, D. & Vrontos, I.D. & Dellaportas, P., 2008. "Modelling nonlinearities and heavy tails via threshold normal mixture GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1549-1571, January.
    33. Osiewalski, Jacek & Pipien, Mateusz, 2004. "Bayesian comparison of bivariate ARCH-type models for the main exchange rates in Poland," Journal of Econometrics, Elsevier, vol. 123(2), pages 371-391, December.
    34. Jouchi Nakajima, 2008. "EGARCH and Stochastic Volatility: Modeling Jumps and Heavy-tails for Stock Returns," IMES Discussion Paper Series 08-E-23, Institute for Monetary and Economic Studies, Bank of Japan.
    35. Ausin, M. Concepcion & Lopes, Hedibert F., 2010. "Time-varying joint distribution through copulas," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2383-2399, November.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Co-authorship network on CollEc

NEP Fields

NEP is an announcement service for new working papers, with a weekly report in each of many fields. This author has had 1 paper announced in NEP. These are the fields, ordered by number of announcements, along with their dates. If the author is listed in the directory of specialists for this field, a link is also provided.
  1. NEP-ECM: Econometrics (1) 2004-08-09
  2. NEP-ETS: Econometric Time Series (1) 2004-08-02

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Ioannis Vrontos should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.