IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

On the forecasting accuracy of multivariate GARCH models

Listed author(s):
  • LAURENT, Sébastien

    (Maastricht University, The Netherlands; Université catholique de Louvain, CORE, B-1348 Louvain-la-Neuve, Belgium)

  • ROMBOUTS, Jeroen V. K.

    (HEC Montréal, CIRANO, CIRPEE; Université catholique de Louvain, CORE, B-1348 Louvain-la-Neuve, Belgium)

  • VIOLANTE, Francesco

    (Université de Namur, CeReFim, B-5000 Namur, Belgium; Université catholique de Louvain, CORE, B-1348 Louvain-la-Neuve, Belgium)

This paper addresses the question of the selection of multivariate GARCH models in terms of variance matrix forecasting accuracy with a particular focus on relatively large scale problems. We consider 10 assets from NYSE and NASDAQ and compare 125 model based one-step-ahead conditional variance forecasts over a period of 10 years using the model confidence set (MCS) and the Superior Predicitive Ability (SPA) tests. Model per- formances are evaluated using four statistical loss functions which account for different types and degrees of asymmetry with respect to over/under predictions. When consid- ering the full sample, MCS results are strongly driven by short periods of high market instability during which multivariate GARCH models appear to be inaccurate. Over rel- atively unstable periods, i.e. dot-com bubble, the set of superior models is composed of more sophisticated specifications such as orthogonal and dynamic conditional correlation (DCC), both with leverage effect in the conditional variances. However, unlike the DCC models, our results show that the orthogonal specifications tend to underestimate the conditional variance. Over calm periods, a simple assumption like constant conditional correlation and symmetry in the conditional variances cannot be rejected. Finally, during the 2007-2008 financial crisis, accounting for non-stationarity in the conditional variance process generates superior forecasts. The SPA test suggests that, independently from the period, the best models do not provide significantly better forecasts than the DCC model of Engle (2002) with leverage in the conditional variances of the returns.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Université catholique de Louvain, Center for Operations Research and Econometrics (CORE) in its series CORE Discussion Papers with number 2010025.

in new window

Date of creation: 01 May 2010
Handle: RePEc:cor:louvco:2010025
Contact details of provider: Postal:
Voie du Roman Pays 34, 1348 Louvain-la-Neuve (Belgium)

Phone: 32(10)474321
Fax: +32 10474304
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Asger Lunde & Peter Reinhard Hansen, 2001. "A Forecast Comparison of Volatility Models: Does Anything Beat a GARCH(1,1)?," Working Papers 2001-04, Brown University, Department of Economics.
  2. Andrew Patton, 2006. "Volatility Forecast Comparison using Imperfect Volatility Proxies," Research Paper Series 175, Quantitative Finance Research Centre, University of Technology, Sydney.
  3. Engle, Robert F. & Ng, Victor K. & Rothschild, Michael, 1990. "Asset pricing with a factor-arch covariance structure : Empirical estimates for treasury bills," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 213-237.
  4. Jianqing Fan & Mingjin Wang & Qiwei Yao, 2008. "Modelling multivariate volatilities via conditionally uncorrelated components," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 679-702.
  5. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2009. "Multivariate Realised Kernels: Consistent Positive Semi-Definite Estimators of the Covariation of Equity Prices with Noise and Non-Synchronous Trading," Global COE Hi-Stat Discussion Paper Series gd08-037, Institute of Economic Research, Hitotsubashi University.
  6. Torben G. Andersen & Tim Bollerslev & Per Houmann Frederiksen & Morten Ørregaard Nielsen, 2007. "Continuous-Time Models, Realized Volatilities, and Testable Distributional Implications for Daily Stock Returns," CREATES Research Papers 2007-21, Department of Economics and Business Economics, Aarhus University.
  7. Anderson, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Labys, Paul, 2002. "Modeling and Forecasting Realized Volatility," Working Papers 02-12, Duke University, Department of Economics.
  8. Per Aslak Mykland & Lan Zhang, 2006. "ANOVA for diffusions and It\^{o} processes," Papers math/0611274,
  9. Ole E. Barndorff-Nielsen & Peter Reinhard Hansen & Asger Lunde & Neil Shephard, 2006. "Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise," Economics Papers 2006-W03, Economics Group, Nuffield College, University of Oxford.
  10. Lanne, Markku & Saikkonen, Pentti, 2005. "A Multivariate Generalized Orthogonal Factor GARCH Model," MPRA Paper 23714, University Library of Munich, Germany.
  11. Caporin, M. & McAleer, M.J., 2010. "Ranking multivariate GARCH models by problem dimension," Econometric Institute Research Papers EI 2010-34, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  12. Roy van der Weide, 2002. "GO-GARCH: a multivariate generalized orthogonal GARCH model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 549-564.
  13. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 33(1), pages 125-132.
  14. Hansen, Peter Reinhard & Lunde, Asger, 2006. "Consistent ranking of volatility models," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 97-121.
  15. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
  16. Bali, Turan G., 2008. "The intertemporal relation between expected returns and risk," Journal of Financial Economics, Elsevier, vol. 87(1), pages 101-131, January.
  17. Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
  18. Todd E. Clark & Michael W. McCracken, 1999. "Tests of equal forecast accuracy and encompassing for nested models," Research Working Paper 99-11, Federal Reserve Bank of Kansas City.
  19. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
  20. BAUWENS, Luc & LAURENT, Sébastien & ROMBOUTS, Jeroen, 2003. "Multivariate GARCH models: a survey," CORE Discussion Papers 2003031, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  21. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
  22. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
  23. Zhou, Bin, 1996. "High-Frequency Data and Volatility in Foreign-Exchange Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 45-52, January.
  24. Clark, Todd E. & West, Kenneth D., 2006. "Using out-of-sample mean squared prediction errors to test the martingale difference hypothesis," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 155-186.
  25. West, K.D., 1994. "Asymptotic Inference About Predictive Ability," Working papers 9417, Wisconsin Madison - Social Systems.
  26. Sébastien Laurent & Jeroen V.K. Rombouts & Francesco Violante, 2009. "On Loss Functions and Ranking Forecasting Performances of Multivariate Volatility Models," Cahiers de recherche 0948, CIRPEE.
  27. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
  28. Lorenzo Cappiello & Robert F. Engle & Kevin Sheppard, 2006. "Asymmetric Dynamics in the Correlations of Global Equity and Bond Returns," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(4), pages 537-572.
  29. Raffaella Giacomini & Halbert White, 2003. "Tests of conditional predictive ability," Boston College Working Papers in Economics 572, Boston College Department of Economics.
  30. Peter Hansen & Jeremy Large & Asger Lunde, 2008. "Moving Average-Based Estimators of Integrated Variance," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 79-111.
  31. Michiel de Pooter & Martin Martens & Dick van Dijk, 2005. "Predicting the Daily Covariance Matrix for S&P 100 Stocks using Intraday Data - But which Frequency to use?," Tinbergen Institute Discussion Papers 05-089/4, Tinbergen Institute, revised 03 Jan 2006.
  32. Joan Jasiak & R. Sufana & C. Gourieroux, 2005. "The Wishart Autoregressive Process of Multivariate Stochastic Volatility," Working Papers 2005_2, York University, Department of Economics.
  33. Palandri, Alessandro, 2009. "Sequential conditional correlations: Inference and evaluation," Journal of Econometrics, Elsevier, vol. 153(2), pages 122-132, December.
  34. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
  35. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(01), pages 122-150, February.
  36. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 7(2), pages 174-196, Spring.
  37. Ralf Becker & Adam Clements, 2007. "Are combination forecasts of S&P 500 volatility statistically superior?," NCER Working Paper Series 17, National Centre for Econometric Research.
  38. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
  39. Lan Zhang & Per A. Mykland & Yacine Ait-Sahalia, 2003. "A Tale of Two Time Scales: Determining Integrated Volatility with Noisy High Frequency Data," NBER Working Papers 10111, National Bureau of Economic Research, Inc.
  40. Adam Clements & Mark Doolan & Stan Hurn & Ralf Becker, 2009. "Evaluating multivariate volatility forecasts," NCER Working Paper Series 41, National Centre for Econometric Research, revised 25 Nov 2009.
  41. repec:oxf:wpaper:264 is not listed on IDEAS
  42. Karolyi, G Andrew, 1995. "A Multivariate GARCH Model of International Transmissions of Stock Returns and Volatility: The Case of the United States and Canada," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 11-25, January.
  43. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
  44. Jianqing Fan & Mingjin Wang & Qiwei Yao, 2008. "Modelling multivariate volatilities via conditionally uncorrelated components," LSE Research Online Documents on Economics 22875, London School of Economics and Political Science, LSE Library.
  45. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
  46. Peter Reinhard Hansen & Zhuo (Albert) Huang & Howard Howan Shek, "undated". "Realized GARCH: A Complete Model of Returns and Realized Measures of Volatility," CREATES Research Papers 2010-13, Department of Economics and Business Economics, Aarhus University.
  47. I. D. Vrontos & P. Dellaportas & D. N. Politis, 2003. "A full-factor multivariate GARCH model," Econometrics Journal, Royal Economic Society, vol. 6(2), pages 312-334, December.
  48. Davidson, James, 2004. "Moment and Memory Properties of Linear Conditional Heteroscedasticity Models, and a New Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 16-29, January.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cor:louvco:2010025. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Alain GILLIS)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.