IDEAS home Printed from https://ideas.repec.org/p/cbt/econwp/12-06.html

Robust Ranking of Multivariate GARCH Models by Problem Dimension

Author

Listed:

Abstract

During the last 15 years, several Multivariate GARCH (MGARCH) models have appeared in the literature. Recent research has begun to examine MGARCH specifications in terms of their out-of-sample forecasting performance. We provide an empirical comparison of alternative MGARCH models, namely BEKK, DCC, Corrected DCC (cDCC), CCC, OGARCH Exponentially Weighted Moving Average, and covariance shrinking, using historical data for 89 US equities. We contribute to the literature in several directions. First, we consider a wide range of models, including the recent cDCC and covariance shrinking models. Second, we use a range of tests and approaches for direct and indirect model comparison, including the Model Confidence Set. Third, we examine how the robust model rankings are influenced by the crosssectional dimension of the problem.

Suggested Citation

  • Massimiliano Caporin & Michael McAleer, 2012. "Robust Ranking of Multivariate GARCH Models by Problem Dimension," Working Papers in Economics 12/06, University of Canterbury, Department of Economics and Finance.
  • Handle: RePEc:cbt:econwp:12/06
    as

    Download full text from publisher

    File URL: https://repec.canterbury.ac.nz/cbt/econwp/1206.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C81 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access
    • Y10 - Miscellaneous Categories - - Data: Tables and Charts - - - Data: Tables and Charts

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cbt:econwp:12/06. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Albert Yee (email available below). General contact details of provider: https://edirc.repec.org/data/decannz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.