IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Choosing the Best Volatility Models: The Model Confidence Set Approach

  • Peter Reinhard Hansen
  • Asger Lunde
  • James M. Nason

This paper applies the model confidence set (MCS) procedure of Hansen, Lunde and Nason (2003) to a set of volatility models. An MCS is analogous to the confidence interval of a parameter in the sense that it contains the best forecasting model with a certain probability. The key to the MCS is that it acknowledges the limitations of the information in the data. The empirical exercise is based on 55 volatility models and the MCS includes about a third of these when evaluated by mean square error, whereas the MCS contains only a VGARCH model when mean absolute deviation criterion is used. We conduct a simulation study which shows that the MCS captures the superior models across a range of significance levels. When we benchmark the MCS relative to a Bonferroni bound, the latter delivers inferior performance. Copyright 2003 Blackwell Publishing Ltd.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.blackwell-synergy.com/doi/abs/10.1046/j.0305-9049.2003.00086.x
File Function: link to full text
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Department of Economics, University of Oxford in its journal Oxford Bulletin of Economics & Statistics.

Volume (Year): 65 (2003)
Issue (Month): s1 (December)
Pages: 839-861

as
in new window

Handle: RePEc:bla:obuest:v:65:y:2003:i:s1:p:839-861
Contact details of provider: Postal: Manor Rd. Building, Oxford, OX1 3UQ
Web page: http://www.blackwellpublishing.com/journal.asp?ref=0305-9049
Email:


More information through EDIRC

Order Information: Web: http://www.blackwellpublishing.com/subs.asp?ref=0305-9049

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Härdle, Wolfgang & Horowitz, Joel L. & Kreiss, Jens-Peter, 2001. "Bootstrap methods for time series," SFB 373 Discussion Papers 2001,59, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  2. Robert F. Engle & Victor K. Ng, 1991. "Measuring and Testing the Impact of News on Volatility," NBER Working Papers 3681, National Bureau of Economic Research, Inc.
  3. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
  4. Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-63, July.
  5. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
  6. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. " On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
  7. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
  8. Kenneth D. West & Michael W. McCracken, 1998. "Regression-Based Tests of Predictive Ability," NBER Technical Working Papers 0226, National Bureau of Economic Research, Inc.
  9. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
  10. Asger Lunde & Peter Reinhard Hansen, 2001. "A Forecast Comparison of Volatility Models: Does Anything Beat a GARCH(1,1)?," Working Papers 2001-04, Brown University, Department of Economics.
  11. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
  12. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Estimating quadratic variation using realised volatility," Economics Papers 2001-W20, Economics Group, Nuffield College, University of Oxford, revised 01 Nov 2001.
  13. repec:att:wimass:9417 is not listed on IDEAS
  14. Edwin J. Elton, 2002. "Spiders: Where Are the Bugs?," The Journal of Business, University of Chicago Press, vol. 75(3), pages 453-472, July.
  15. Neil Shephard & Jurgen Doornik & Siem Jan Koopman, 1998. "Statistical algorithms for models in state space using SsfPack 2.2," Economics Series Working Papers 1998-W06, University of Oxford, Department of Economics.
  16. Hentschel, Ludger, 1995. "All in the family Nesting symmetric and asymmetric GARCH models," Journal of Financial Economics, Elsevier, vol. 39(1), pages 71-104, September.
  17. Peter Reinhard Hansen & Asger Lunde & James M. Nason, 2005. "Model confidence sets for forecasting models," Working Paper 2005-07, Federal Reserve Bank of Atlanta.
  18. Peter Hansen, 2003. "Asymptotic Tests of Composite Hypotheses," Working Papers 2003-09, Brown University, Department of Economics.
  19. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
  20. Duan, Jin-Chuan, 1997. "Augmented GARCH (p,q) process and its diffusion limit," Journal of Econometrics, Elsevier, vol. 79(1), pages 97-127, July.
  21. Kenneth D. West, 1994. "Asymptotic Inference About Predictive Ability," Macroeconomics 9410002, EconWPA.
  22. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
  23. Geoffrey F. Loudon & Wing H. Watt & Pradeep K. Yadav, 2000. "An empirical analysis of alternative parametric ARCH models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(2), pages 117-136.
  24. Higgins, Matthew L & Bera, Anil K, 1992. "A Class of Nonlinear ARCH Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 33(1), pages 137-58, February.
  25. Maria Elvira Mancino & Paul Malliavin, 2002. "Fourier series method for measurement of multivariate volatilities," Finance and Stochastics, Springer, vol. 6(1), pages 49-61.
  26. Todd E. Clark & Michael W. McCracken, 2000. "Tests of Equal Forecast Accuracy and Encompassing for Nested Models," Econometric Society World Congress 2000 Contributed Papers 0319, Econometric Society.
  27. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
  28. Sentana, Enrique, 1995. "Quadratic ARCH Models," Review of Economic Studies, Wiley Blackwell, vol. 62(4), pages 639-61, October.
  29. Barucci, Emilio & Reno, Roberto, 2002. "On measuring volatility of diffusion processes with high frequency data," Economics Letters, Elsevier, vol. 74(3), pages 371-378, February.
  30. Pantula, Sastry G., 1989. "Testing for Unit Roots in Time Series Data," Econometric Theory, Cambridge University Press, vol. 5(02), pages 256-271, August.
  31. Peter Hansen & Asger Lunde, 2003. "Consistent Preordering with an Estimated Criterion Function, with an Application to the Evaluation and Comparison of Volatility Models," Working Papers 2003-01, Brown University, Department of Economics.
  32. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501, March.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:bla:obuest:v:65:y:2003:i:s1:p:839-861. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing)

or (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.