IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Comparing density forecast models Previous versions of this paper have been circulated with the title, 'A Test for Density Forecast Comparison with Applications to Risk Management' since October 2003; see Bao et al. (2004)

  • Tae-Hwy Lee

    (University of California, Riverside, California USA)

  • Yong Bao

    (University of Texas, San Antonio, Texas, USA)

  • Burak Saltoğlu

    (Bosphorous University, Istanbul, Turkey)

In this paper we discuss how to compare various (possibly misspecified) density forecast models using the Kullback-Leibler information criterion (KLIC) of a candidate density forecast model with respect to the true density. The KLIC differential between a pair of competing models is the (predictive) log-likelihood ratio (LR) between the two models. Even though the true density is unknown, using the LR statistic amounts to comparing models with the KLIC as a loss function and thus enables us to assess which density forecast model can approximate the true density more closely. We also discuss how this KLIC is related to the KLIC based on the probability integral transform (PIT) in the framework of Diebold et al. (1998). While they are asymptotically equivalent, the PIT-based KLIC is best suited for evaluating the adequacy of each density forecast model and the original KLIC is best suited for comparing competing models. In an empirical study with the S&P500 and NASDAQ daily return series, we find strong evidence for rejecting the normal-GARCH benchmark model, in favor of the models that can capture skewness in the conditional distribution and asymmetry and long memory in the conditional variance. Copyright © 2007 John Wiley & Sons, Ltd.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: Link to full text; subscription required
Download Restriction: no

Article provided by John Wiley & Sons, Ltd. in its journal Journal of Forecasting.

Volume (Year): 26 (2007)
Issue (Month): 3 ()
Pages: 203-225

in new window

Handle: RePEc:jof:jforec:v:26:y:2007:i:3:p:203-225
DOI: 10.1002/for.1023
Contact details of provider: Web page:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:jof:jforec:v:26:y:2007:i:3:p:203-225. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing)

or (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.