IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper

An Empirical Investigation of Continuous-Time Equity Return Models

  • Torben G. Andersen
  • Luca Benzoni
  • Jesper Lund

This paper extends the class of stochastic volatility diffusions for asset returns to encompass Poisson jumps of time-varying intensity. We find that any reasonably descriptive continuous-time model for equity-index returns must allow for discrete jumps as well as stochastic volatility with a pronounced negative relationship between return and volatility innovations. We also find that the dominant empirical characteristics of the return process appear to be priced by the option market. Our analysis indicates a general correspondence between the evidence extracted from daily equity-index returns and the stylized features of the corresponding options market prices.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.nber.org/papers/w8510.pdf
Download Restriction: no

Paper provided by National Bureau of Economic Research, Inc in its series NBER Working Papers with number 8510.

as
in new window

Length:
Date of creation: Oct 2001
Date of revision:
Publication status: published as Andersen, Torben G., Luca Benzoni and Jesper Lund. "An Empirical Investigation Of Continuous-Time Equity Return Models," Journal of Finance, 2002, v57(3,Jun), 1239-1284.
Handle: RePEc:nbr:nberwo:8510
Note: AP
Contact details of provider: Postal:
National Bureau of Economic Research, 1050 Massachusetts Avenue Cambridge, MA 02138, U.S.A.

Phone: 617-868-3900
Web page: http://www.nber.org
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Jiang, G.J. & van der Sluis, P.J., 2000. "Index Option Pricing Models with Stochastic Volatility and Stochastic Interest Rates," Discussion Paper 2000-36, Tilburg University, Center for Economic Research.
  2. Yacine Ait-Sahalia, 1995. "Nonparametric Pricing of Interest Rate Derivative Securities," NBER Working Papers 5345, National Bureau of Economic Research, Inc.
  3. Mark Rubinstein., 1994. "Implied Binomial Trees," Research Program in Finance Working Papers RPF-232, University of California at Berkeley.
  4. Duffie, Darrell & Singleton, Kenneth J, 1993. "Simulated Moments Estimation of Markov Models of Asset Prices," Econometrica, Econometric Society, vol. 61(4), pages 929-52, July.
  5. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
  6. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
  7. Pastorello, Sergio & Renault, Eric & Touzi, Nizar, 2000. "Statistical Inference for Random-Variance Option Pricing," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 358-67, July.
  8. Gallant, A. Ronald & Hsieh, David & Tauchen, George, 1997. "Estimation of stochastic volatility models with diagnostics," Journal of Econometrics, Elsevier, vol. 81(1), pages 159-192, November.
  9. Gallant, A. Ronald & Hsu, Chien-Te & Tauchen, George, 2000. "Using Daily Range Data to Calibrate Volatility Diffusions and Extract the Forward Integrated Variance," Working Papers 00-04, Duke University, Department of Economics.
  10. Jarrow, Robert & Rudd, Andrew, 1982. "Approximate option valuation for arbitrary stochastic processes," Journal of Financial Economics, Elsevier, vol. 10(3), pages 347-369, November.
  11. Chernov, Mikhail & Ronald Gallant, A. & Ghysels, Eric & Tauchen, George, 2003. "Alternative models for stock price dynamics," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 225-257.
  12. Rubinstein, Mark, 1994. " Implied Binomial Trees," Journal of Finance, American Finance Association, vol. 49(3), pages 771-818, July.
  13. Gurdip Bakshi & Nikunj Kapadia, 2003. "Delta-Hedged Gains and the Negative Market Volatility Risk Premium," Review of Financial Studies, Society for Financial Studies, vol. 16(2), pages 527-566.
  14. Andrew W. Lo, 1986. "Maximum Likelihood Estimation of Generalized Ito Processes with Discretely Sampled Data," NBER Technical Working Papers 0059, National Bureau of Economic Research, Inc.
  15. Bakshi, Gurdip & Madan, Dilip, 2000. "Spanning and derivative-security valuation," Journal of Financial Economics, Elsevier, vol. 55(2), pages 205-238, February.
  16. Cox, John C & Ingersoll, Jonathan E, Jr & Ross, Stephen A, 1985. "A Theory of the Term Structure of Interest Rates," Econometrica, Econometric Society, vol. 53(2), pages 385-407, March.
  17. Chernov, Mikhail & Ghysels, Eric, 2000. "A study towards a unified approach to the joint estimation of objective and risk neutral measures for the purpose of options valuation," Journal of Financial Economics, Elsevier, vol. 56(3), pages 407-458, June.
  18. Gallant, A. Ronald & Tauchen, George, 1997. "Estimation Of Continuous-Time Models For Stock Returns And Interest Rates," Macroeconomic Dynamics, Cambridge University Press, vol. 1(01), pages 135-168, January.
  19. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 1994. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 371-89, October.
  20. Longstaff, Francis A, 1995. "Option Pricing and the Martingale Restriction," Review of Financial Studies, Society for Financial Studies, vol. 8(4), pages 1091-1124.
  21. Andersen, Torben G. & Chung, Hyung-Jin & Sorensen, Bent E., 1999. "Efficient method of moments estimation of a stochastic volatility model: A Monte Carlo study," Journal of Econometrics, Elsevier, vol. 91(1), pages 61-87, July.
  22. Chacko, George & Viceira, Luis M., 2003. "Spectral GMM estimation of continuous-time processes," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 259-292.
  23. Gallant, A Ronald & Rossi, Peter E & Tauchen, George, 1992. "Stock Prices and Volume," Review of Financial Studies, Society for Financial Studies, vol. 5(2), pages 199-242.
  24. Andrew W. Lo & Craig A. MacKinlay, . "An Econometric Analysis of Nonsyschronous-Trading," Rodney L. White Center for Financial Research Working Papers 19-89, Wharton School Rodney L. White Center for Financial Research.
  25. repec:cup:etheor:v:12:y:1996:i:4:p:657-81 is not listed on IDEAS
  26. Jarrow, Robert A & Rosenfeld, Eric R, 1984. "Jump Risks and the Intertemporal Capital Asset Pricing Model," The Journal of Business, University of Chicago Press, vol. 57(3), pages 337-51, July.
  27. Bates, David S., 2000. "Post-'87 crash fears in the S&P 500 futures option market," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 181-238.
  28. Sanjiv R. Das & Rangarajan K. Sundaram, 1998. "Of Smiles and Smirks: A Term-Structure Perspective," New York University, Leonard N. Stern School Finance Department Working Paper Seires 98-024, New York University, Leonard N. Stern School of Business-.
  29. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
  30. David Backus & Silverio Foresi & Liuren Wu, 2002. "Accouting for Biases in Black-Scholes," Finance 0207008, EconWPA.
  31. Charles Quanwei Cao & Gurdip S. Bakshi & Zhiwu Chen, 1998. "Pricing and Hedging Long-Term Options," Yale School of Management Working Papers ysm90, Yale School of Management.
  32. repec:cup:etheor:v:13:y:1997:i:5:p:615-45 is not listed on IDEAS
  33. Naik, Vasanttilak & Lee, Moon, 1990. "General Equilibrium Pricing of Options on the Market Portfolio with Discontinuous Returns," Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 493-521.
  34. Gallant, A Ronald & Nychka, Douglas W, 1987. "Semi-nonparametric Maximum Likelihood Estimation," Econometrica, Econometric Society, vol. 55(2), pages 363-90, March.
  35. Tauchen, George E. & Gallant, A. Ronald, 1995. "Which Moments to Match," Working Papers 95-20, Duke University, Department of Economics.
  36. Lawrence R. Glosten & Ravi Jagannathan & David E. Runkle, 1993. "On the relation between the expected value and the volatility of the nominal excess return on stocks," Staff Report 157, Federal Reserve Bank of Minneapolis.
  37. Mikhail Chernov & A. Ronald Gallant & Eric Ghysels & George Tauchen, 1999. "A New Class of Stochastic Volatility Models with Jumps: Theory and Estimation," CIRANO Working Papers 99s-48, CIRANO.
  38. Singleton, Kenneth J., 2001. "Estimation of affine asset pricing models using the empirical characteristic function," Journal of Econometrics, Elsevier, vol. 102(1), pages 111-141, May.
  39. Menachem Brenner & Young Ho Eom, 1997. "No-Arbitrage Option Pricing: New Evidence on the Validity of the Martingale Property," New York University, Leonard N. Stern School Finance Department Working Paper Seires 98-009, New York University, Leonard N. Stern School of Business-.
  40. Andersen, Torben G. & Lund, Jesper, 1997. "Estimating continuous-time stochastic volatility models of the short-term interest rate," Journal of Econometrics, Elsevier, vol. 77(2), pages 343-377, April.
  41. Hans M. Amman & David A. Kendrick, . "Computational Economics," Online economics textbooks, SUNY-Oswego, Department of Economics, number comp1.
  42. Conley, Timothy G, et al, 1997. "Short-Term Interest Rates as Subordinated Diffusions," Review of Financial Studies, Society for Financial Studies, vol. 10(3), pages 525-77.
  43. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
  44. Philippe Jorion, 1988. "On Jump Processes in the Foreign Exchange and Stock Markets," Review of Financial Studies, Society for Financial Studies, vol. 1(4), pages 427-445.
  45. Gallant, A. Ronald & Tauchen, George, 1997. "Reprojecting Partially Observed Systems with Application to Interest Rate Diffusions," Working Papers 97-09, Duke University, Department of Economics.
  46. Akgiray, Vedat & Booth, Geoffrey, 1986. "Stock Price Processes with Discontinuous Time Paths: An Empirical Examination," The Financial Review, Eastern Finance Association, vol. 21(2), pages 163-84, May.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:8510. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.