IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

A New Class of Stochastic Volatility Models with Jumps: Theory and Estimation

  • Mikhail Chernov
  • A. Ronald Gallant
  • Eric Ghysels
  • George Tauchen

The purpose of this paper is to propose a new class of jump diffusions which feature both stochastic volatility and random intensity jumps. Previous studies have focussed primarily on pure jump processes with constant intensity and log-normal jumps or constant jump intensity combined with a one factor stochastic volatility model. We introduce several generalizations which can better accommodate several empirical features of returns data. In their most general form we introduce a class of processes which nests jump-diffusions previously considered in empirical work and includes the affine class of random intensity models studied by Bates (1998) and Duffie, Pan and Singleton (1998) but also allows for non-affine random intensity jump components. We attain the generality of our specification through a generic Lévy process characterization of the jump component. The processes we introduce share the desirable feature with the affine class that they yield analytically tractable and explicit option pricing formula. The non-affine class of processes we study include specifications where the random intensity jump component depends on the size of the previous jump which represent an alternative to affine random intensity jump processes which feature correlation between the stochastic volatility and jump component. We also allow for and experiment with different empirical specifications of the jump size distributions. We use two types of data sets. One involves the S&P500 and the other comprises of 100 years of daily Dow Jones index. The former is a return series often used in the literature and allows us to compare our results with previous studies. The latter has the advantage to provide a long time series and enhances the possibility of estimating the jump component more precisely. The non-affine random intensity jump processes are more parsimonious than the affine class and appear to fit the data much better. Nous présentons une nouvelle classe de processus à sauts avec volatilité stochastique. Cette nouvelle classe généralise les modèles affinés proposés par Duffie, Pan et Singleton (1998). La généralité se manifeste par une représentation générique des sauts par un processus de Lévy. La classe des processus que nous présentons nous fournit également des prix d'options. Une application empirique démontre la présence de sauts dans des séries financières telles le S&P500 et le Dow Jones. De plus, les processus n'ont pas une intensité constante. Nous analysons plusieurs spécifications empiriques.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.cirano.qc.ca/files/publications/99s-48.pdf
Download Restriction: no

Paper provided by CIRANO in its series CIRANO Working Papers with number 99s-48.

as
in new window

Length: 40 pages
Date of creation: 01 Nov 1999
Date of revision:
Handle: RePEc:cir:cirwor:99s-48
Contact details of provider: Postal: 1130 rue Sherbrooke Ouest, suite 1400, Montréal, Quéc, H3A 2M8
Phone: (514) 985-4000
Fax: (514) 985-4039
Web page: http://www.cirano.qc.ca/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Darrell Duffie & Kenneth J. Singleton, 1990. "Simulated Moments Estimation of Markov Models of Asset Prices," NBER Technical Working Papers 0087, National Bureau of Economic Research, Inc.
  2. Fenton, Victor M. & Gallant, A. Ronald, 1996. "Qualitative and asymptotic performance of SNP density estimators," Journal of Econometrics, Elsevier, vol. 74(1), pages 77-118, September.
  3. Lo, Andrew W. (Andrew Wen-Chuan) & Wang, Jiang, 1959-, 1993. "Implementing option pricing models when asset returns are predictable," Working papers 3593-93., Massachusetts Institute of Technology (MIT), Sloan School of Management.
  4. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
  5. Chacko, George & Viceira, Luis M., 2003. "Spectral GMM estimation of continuous-time processes," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 259-292.
  6. Gallant, Ronald & Tauchen, George, 1989. "Seminonparametric Estimation of Conditionally Constrained Heterogeneous Processes: Asset Pricing Applications," Econometrica, Econometric Society, vol. 57(5), pages 1091-1120, September.
  7. Gallant, A. Ronald & Hsieh, David & Tauchen, George, 1997. "Estimation of stochastic volatility models with diagnostics," Journal of Econometrics, Elsevier, vol. 81(1), pages 159-192, November.
  8. Chernov, Mikhail & Ghysels, Eric, 2000. "A study towards a unified approach to the joint estimation of objective and risk neutral measures for the purpose of options valuation," Journal of Financial Economics, Elsevier, vol. 56(3), pages 407-458, June.
  9. A. Ronald Gallant & Chien-Te Hsu & George Tauchen, 1999. "Using Daily Range Data To Calibrate Volatility Diffusions And Extract The Forward Integrated Variance," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 617-631, November.
  10. Philippe Jorion, 1988. "On Jump Processes in the Foreign Exchange and Stock Markets," Review of Financial Studies, Society for Financial Studies, vol. 1(4), pages 427-445.
  11. Gallant, A Ronald & Rossi, Peter E & Tauchen, George, 1992. "Stock Prices and Volume," Review of Financial Studies, Society for Financial Studies, vol. 5(2), pages 199-242.
  12. Ball, Clifford A & Torous, Walter N, 1985. " On Jumps in Common Stock Prices and Their Impact on Call Option Pricing," Journal of Finance, American Finance Association, vol. 40(1), pages 155-73, March.
  13. repec:cup:etheor:v:12:y:1996:i:4:p:657-81 is not listed on IDEAS
  14. Tauchen, George E. & Gallant, A. Ronald, 1995. "Which Moments to Match," Working Papers 95-20, Duke University, Department of Economics.
  15. Jarrow, Robert A & Rosenfeld, Eric R, 1984. "Jump Risks and the Intertemporal Capital Asset Pricing Model," The Journal of Business, University of Chicago Press, vol. 57(3), pages 337-51, July.
  16. Ho, Mun S & Perraudin, William R M & Sorensen, Bent E, 1996. "A Continuous-Time Arbitrage-Pricing Model with Stochastic Volatility and Jumps," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 31-43, January.
  17. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
  18. Ball, Clifford A. & Torous, Walter N., 1983. "A Simplified Jump Process for Common Stock Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 18(01), pages 53-65, March.
  19. Bates, David S., 2000. "Post-'87 crash fears in the S&P 500 futures option market," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 181-238.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:99s-48. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Webmaster)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.