IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

An Eigenfunction Approach for Volatility Modeling

  • Nour Meddahi

In this paper, we introduce a new approach for volatility modeling in discrete and continuous time. We follow the stochastic volatility literature by assuming that the variance is a function of a state variable. However, instead of assuming that the loading function is ad hoc (e.g., exponential or affine), we assume that it is a linear combination of the eigenfunctions of the conditional expectation (resp infinitesimal generator) operator associated to the state variable in discrete (resp continuous) time. Special examples are the popular log-normal and square-root models where the eigenfunctions are the Hermite and Laguerre polynomials, respectively. The eigenfunction approach has at least six advantages : i) it is general since any square integrable function may be written as a linear combination of the eigenfunctions; ii) the orthogonality of the eigenfunctions leads to the traditional interpretations of the linear principal components analysis; iii) the implied dynamics of the variance and squared return processes are ARMA and therefore simple for forecasting and inference purposes; iv) more importantly, this generates fat tails for the variance and returns processes; v) in contrast to popular models, the variance of the variance is a flexible function of the variance; vi) these models are closed under temporal aggregation. Dans cet article, nous proposons une nouvelle approche pour la modélisation de la volatilité en temps discret et continu. Nous adoptons la même approche que la littérature de la volatilité stochastique en supposant que la volatilité est une fonction d'une variable d'état. Néanmoins, au lieu de supposer que la fonction de lien est donnée de manière ad hoc (par exemple, exponentielle ou affine), nous supposons que c'est une combinaison linéaire des fonctions propres de l'opérateur espérance conditionnelle (générateur infinitésimal, respectivement) associé à la variable d'état en temps discret (continu, respectivement). Les modèles populaires exponentiels et racine carrée sont des exemples où les fonctions propres sont respectivement les polynomes de Hermite et de Laguerre. L'approche par fonctions propres a au moins six avantages : i) elle est générale puisque toute fonction de carré intégrable peut être écrite comme combinaison linéaire des fonctions propres; ii) l'orthogonalité des fonctions propres permet d'utiliser les interprétations usuelles de l'analyse en composantes principales linéaires; iii) les dynamiques induites de la variance et du carré de l'innovation sont des ARMA et donc sont simples pour la prévision et l'inférence statistique; iv) plus important, cette approche génère des queues épaisses pour les processus de volatilité et de rendements; v) à l'opposé des modèles usuels, la variance de la variance est une fonction flexible de la variance; vi) ces modèles sont robustes vis-à-vis de l'agrégation temporelle.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.cirano.qc.ca/files/publications/2001s-70.pdf
Download Restriction: no

Paper provided by CIRANO in its series CIRANO Working Papers with number 2001s-70.

as
in new window

Length: 49 pages
Date of creation: 01 Oct 2001
Date of revision:
Handle: RePEc:cir:cirwor:2001s-70
Contact details of provider: Postal:
1130 rue Sherbrooke Ouest, suite 1400, Montréal, Quéc, H3A 2M8

Phone: (514) 985-4000
Fax: (514) 985-4039
Web page: http://www.cirano.qc.ca/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. " Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-49, December.
  2. Fiorentini, Gabriele & Sentana, Enrique, 1998. "Conditional Means of Time Series Processes and Time Series Processes for Conditional Means," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 1101-18, November.
  3. Chernov, Mikhail & Gallant, A. Ronald & Ghysels, Eric & Tauchen, George, 2002. "Alternative Models for Stock Price Dynamic," Working Papers 02-03, Duke University, Department of Economics.
  4. Constantinides, George M, 1992. "A Theory of the Nominal Term Structure of Interest Rates," Review of Financial Studies, Society for Financial Studies, vol. 5(4), pages 531-52.
  5. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 33(1), pages 125-132.
  6. Nour Meddahi & Éric Renault, 2000. "Temporal Aggregation of Volatility Models," CIRANO Working Papers 2000s-22, CIRANO.
  7. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-70, March.
  8. Darrell Duffie & Rui Kan, 1996. "A Yield-Factor Model Of Interest Rates," Mathematical Finance, Wiley Blackwell, vol. 6(4), pages 379-406.
  9. Andrew Harvey & Esther Ruiz & Neil Shephard, 1994. "Multivariate Stochastic Variance Models," Review of Economic Studies, Oxford University Press, vol. 61(2), pages 247-264.
  10. Torben G. Andersen & Luca Benzoni & Jesper Lund, 2002. "An Empirical Investigation of Continuous-Time Equity Return Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1239-1284, 06.
  11. Nelson, Daniel B., 1996. "A Note on the Normalized Errors in ARCH and Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 12(01), pages 113-128, March.
  12. Drost, Feike C & Nijman, Theo E, 1993. "Temporal Aggregation of GARCH Processes," Econometrica, Econometric Society, vol. 61(4), pages 909-27, July.
  13. Hansen, Lars Peter, 1985. "A method for calculating bounds on the asymptotic covariance matrices of generalized method of moments estimators," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 203-238.
  14. Leippold, Markus & Wu, Liuren, 2002. "Asset Pricing under the Quadratic Class," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 37(02), pages 271-295, June.
  15. Torben G. Andersen & Hyung-Jin Chung & Bent E. Sorensen, . "EMM Estimation of a Stochastic Volatility Model: A Monte Carlo Study," Computing in Economics and Finance 1997 6, Society for Computational Economics.
  16. Chen, Xiaohong & Hansen, Lars Peter & Carrasco, Marine, 2008. "Nonlinearity and Temporal Dependence," Working Papers 48, Yale University, Department of Economics.
  17. Wiggins, James B., 1987. "Option values under stochastic volatility: Theory and empirical estimates," Journal of Financial Economics, Elsevier, vol. 19(2), pages 351-372, December.
  18. Nelson, Daniel B & Foster, Dean P, 1994. "Asymptotic Filtering Theory for Univariate ARCH Models," Econometrica, Econometric Society, vol. 62(1), pages 1-41, January.
  19. Gallant, A. Ronald & Tauchen, George, 1996. "Which Moments to Match?," Econometric Theory, Cambridge University Press, vol. 12(04), pages 657-681, October.
  20. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
  21. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-55, January.
  22. Lars Peter Hansen & Kenneth J. Singleton, 1997. "Efficient Estimation of Linear Asset Pricing Models with Moving-Average Errors," NBER Technical Working Papers 0086, National Bureau of Economic Research, Inc.
  23. GARCIA,René & LUGER, Richard & RENAULT, Éric, 2001. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Cahiers de recherche 2001-09, Universite de Montreal, Departement de sciences economiques.
  24. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
  25. Hansen, Lars Peter & Alexandre Scheinkman, Jose & Touzi, Nizar, 1998. "Spectral methods for identifying scalar diffusions," Journal of Econometrics, Elsevier, vol. 86(1), pages 1-32, June.
  26. Nelson, Daniel B., 1990. "ARCH models as diffusion approximations," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 7-38.
  27. Joann Jasiak & Christian Gourieroux, 2006. "Autoregressive gamma processes," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(2), pages 129-152.
  28. Gallant, A Ronald & Rossi, Peter E & Tauchen, George, 1993. "Nonlinear Dynamic Structures," Econometrica, Econometric Society, vol. 61(4), pages 871-907, July.
  29. Darrell Duffie & Kenneth J. Singleton, 1990. "Simulated Moments Estimation of Markov Models of Asset Prices," NBER Technical Working Papers 0087, National Bureau of Economic Research, Inc.
  30. Meddahi, N & Renault, E., 1996. "Aggregations and Marginalization of Garch and Stochastic Volatility Models," Papers 96.433, Toulouse - GREMAQ.
  31. Conley, Timothy G. & Hansen, Lars Peter & Liu, Wen-Fang, 1997. "Bootstrapping The Long Run," Macroeconomic Dynamics, Cambridge University Press, vol. 1(02), pages 279-311, June.
  32. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
  33. Mikhail Chernov & A. Ronald Gallant & Eric Ghysels & George Tauchen, 1999. "A New Class of Stochastic Volatility Models with Jumps: Theory and Estimation," CIRANO Working Papers 99s-48, CIRANO.
  34. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2002. "Markov chain Monte Carlo methods for stochastic volatility models," Journal of Econometrics, Elsevier, vol. 108(2), pages 281-316, June.
  35. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-54, July.
  36. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 1994. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 371-89, October.
  37. Benoit Mandelbrot, 1963. "The Variation of Certain Speculative Prices," The Journal of Business, University of Chicago Press, vol. 36, pages 394.
  38. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 361-393.
  39. repec:crs:wpaper:9855 is not listed on IDEAS
  40. Hansen, Lars Peter & Scheinkman, Jose Alexandre, 1995. "Back to the Future: Generating Moment Implications for Continuous-Time Markov Processes," Econometrica, Econometric Society, vol. 63(4), pages 767-804, July.
  41. Gallant, A.R. & Tauchen, G., 1988. "Seminonparametric Estimation Of Conditionally Constrained Heterogeneous Processes: Asset Pricing Applications," Papers 88-59, Chicago - Graduate School of Business.
  42. repec:cup:etheor:v:12:y:1996:i:1:p:113-28 is not listed on IDEAS
  43. Ghysels, Eric & Gourieroux, Christian & Jasiak, Joann, 2004. "Stochastic volatility duration models," Journal of Econometrics, Elsevier, vol. 119(2), pages 413-433, April.
  44. Florens, Jean-Pierre & Renault, Eric & Touzi, Nizar, 1998. "Testing For Embeddability By Stationary Reversible Continuous-Time Markov Processes," Econometric Theory, Cambridge University Press, vol. 14(06), pages 744-769, December.
  45. Pierre Druilhet, 2001. "Conditions for Optimality in Experimental Designs," Working Papers 2001-20, Centre de Recherche en Economie et Statistique.
  46. Nelson, Daniel B., 1990. "Stationarity and Persistence in the GARCH(1,1) Model," Econometric Theory, Cambridge University Press, vol. 6(03), pages 318-334, September.
  47. Ronald Gallant, A. & Tauchen, George, 1999. "The relative efficiency of method of moments estimators1," Journal of Econometrics, Elsevier, vol. 92(1), pages 149-172, September.
  48. Andersen, Torben G. & Chung, Hyung-Jin & Sorensen, Bent E., 1999. "Efficient method of moments estimation of a stochastic volatility model: A Monte Carlo study," Journal of Econometrics, Elsevier, vol. 91(1), pages 61-87, July.
  49. Bollerslev, Tim & Engle, Robert F, 1993. "Common Persistence in Conditional Variances," Econometrica, Econometric Society, vol. 61(1), pages 167-86, January.
  50. Yacine Ait-Sahalia, 2002. "Maximum Likelihood Estimation of Discretely Sampled Diffusions: A Closed-form Approximation Approach," Econometrica, Econometric Society, vol. 70(1), pages 223-262, January.
  51. Robinson, P. M., 2001. "The memory of stochastic volatility models," Journal of Econometrics, Elsevier, vol. 101(2), pages 195-218, April.
  52. Paolo Zaffaroni & Peter M. Robinson, 1997. "Nonlinear Time Series With Long Memory: A Model for Stochastic Volatility," FMG Discussion Papers dp253, Financial Markets Group.
  53. Gourieroux, C. & Monfort, A. & Renault, E., 1992. "Indirect Inference," Papers 92.279, Toulouse - GREMAQ.
  54. Schwert, G William, 1989. " Why Does Stock Market Volatility Change over Time?," Journal of Finance, American Finance Association, vol. 44(5), pages 1115-53, December.
  55. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
  56. Ho, Mun S & Perraudin, William R M & Sorensen, Bent E, 1996. "A Continuous-Time Arbitrage-Pricing Model with Stochastic Volatility and Jumps," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 31-43, January.
  57. Gallant, A. Ronald & Hsu, Chien-Te & Tauchen, George, 2000. "Using Daily Range Data to Calibrate Volatility Diffusions and Extract the Forward Integrated Variance," Working Papers 00-04, Duke University, Department of Economics.
  58. Melino, Angelo & Turnbull, Stuart M., 1990. "Pricing foreign currency options with stochastic volatility," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 239-265.
  59. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-52.
  60. Neil Shephard & Ole E. Barndorff-Nielsen, 1999. "Non-Gaussian OU Based Models and some of their use in Financial Economics," Economics Series Working Papers 1999-W09, University of Oxford, Department of Economics.
  61. repec:cup:etheor:v:12:y:1996:i:4:p:657-81 is not listed on IDEAS
  62. Éric Jacquier & Nicholas G. Polson & Peter E. Rossi, 1999. "Stochastic Volatility: Univariate and Multivariate Extensions," CIRANO Working Papers 99s-26, CIRANO.
  63. Drost, F.C. & Nijman, T.E., 1993. "Temporal aggregation of GARCH processes," Other publications TiSEM 0642fb61-c7f4-4281-b484-4, Tilburg University, School of Economics and Management.
  64. Ahn, Dong-Hyun & Dittmar, Robert F. & Gallant, A. Ronald & Gao, Bin, 2003. "Purebred or hybrid?: Reproducing the volatility in term structure dynamics," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 147-180.
  65. Xiaohong Chen & Lars Peter Hansen & Jose A. Scheinkman, 2009. "Principal components and the long run," CeMMAP working papers CWP07/09, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  66. Giraitis, Liudas & Kokoszka, Piotr & Leipus, Remigijus, 2000. "Stationary Arch Models: Dependence Structure And Central Limit Theorem," Econometric Theory, Cambridge University Press, vol. 16(01), pages 3-22, February.
  67. Conley, Timothy G, et al, 1997. "Short-Term Interest Rates as Subordinated Diffusions," Review of Financial Studies, Society for Financial Studies, vol. 10(3), pages 525-77.
  68. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
  69. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
  70. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-43.
  71. Dong-Hyun Ahn & Robert F. Dittmar, 2002. "Quadratic Term Structure Models: Theory and Evidence," Review of Financial Studies, Society for Financial Studies, vol. 15(1), pages 243-288, March.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:2001s-70. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Webmaster)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.