IDEAS home Printed from https://ideas.repec.org/p/cir/cirwor/99s-26.html
   My bibliography  Save this paper

Stochastic Volatility: Univariate and Multivariate Extensions

Author

Listed:
  • Éric Jacquier
  • Nicholas G. Polson
  • Peter E. Rossi

Abstract

Stochastic volatility models, aka SVOL, are more difficult to estimate than standard time-varying volatility models (ARCH). Advances in the literature now offer well tested estimators for a basic univariate SVOL model. However, the basic model is too restrictive for many economic and finance applications. The use of the basic model can lead to biased volatility forecasts especially around crucial periods of high volatility. We extend the basic SVOL needs to allow for the leverage effect, through a correlation between observable and variance errors, and fat-tails in the conditional distribution. We develop a Bayesian Markov Chain Monte Carlo algorithm for this extended model. We also provide an algorithm to analyze a multivariate factor SVOL model. The method simultaneously performs finite sample inference and smoothing. We document the performance of the estimator and show why the extensions are warranted. We provide the researcher with a range of model diagnostics, such as the identification of outliers for stochastic volatility models or the assessment of the normality of the conditional distribution. We implement this methodology on a number of univariate financial time series. There is strong evidence of (1) non-normal conditional distributions for most series, and (2) a leverage effect for stock returns. We illustrate the robustness of the results to the choice of the prior distributions. These results have policy implications on decisions based upon prediction of volatility, especially when dealing with tail prediction as in risk management. Les modèles de volatilité stochastique, alias SVOL, sont plus durs à estimer que les modèles traditionnels de type ARCH. La littérature récente offre des estimateurs éprouvés pour un modèle SVOL univarié de base. Ce modèle est trop contraignant pour une utilisation en économie financière. Les prévisions de volatilité qu'il produit peuvent etre biaisées, particulièrement quand la volatilité est élevée. Nous généralisons le modèle de base en y ajoutant des effets de levier par le biais d'une corrélation entre les chocs observables et de variance, et la possibilité de distributions conditionnelles à queues épaisses. Nous développons un algorithme bayésien à chaînes markoviennes de Monte Carlo. Nous développons aussi un algorithme pour l'analyse d'un modèle SVOL multivarié à facteurs. Ces estimateurs permettent une inférence en échantillon fini pour les paramètres et les volatilités. Nous documentons les performances de l'estimateur et montrons que les extensions sont nécessaires. Nous testons la normalité des distributions conditionnelles. Cette méthode est mise en oeuvre sur plusieurs séries financières. Il y a une forte évidence (1) de distributions conditionnelles à queues épaisses, et (2) d'effets de levier pour les actifs financiers. Les résultats sont robustes et ont d'importantes implications sur les décisions fondées sur les prédictions de volatilité, particulièrement pour la gestion de risques.

Suggested Citation

  • Éric Jacquier & Nicholas G. Polson & Peter E. Rossi, 1999. "Stochastic Volatility: Univariate and Multivariate Extensions," CIRANO Working Papers 99s-26, CIRANO.
  • Handle: RePEc:cir:cirwor:99s-26
    as

    Download full text from publisher

    File URL: http://www.cirano.qc.ca/files/publications/99s-26.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Geweke, John, 1994. "Priors for Macroeconomic Time Series and Their Application," Econometric Theory, Cambridge University Press, vol. 10(3-4), pages 609-632, August.
    2. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    3. Geweke, John & Zhou, Guofu, 1996. "Measuring the Pricing Error of the Arbitrage Pricing Theory," Review of Financial Studies, Society for Financial Studies, vol. 9(2), pages 557-587.
    4. John F. Geweke, 1994. "Bayesian comparison of econometric models," Working Papers 532, Federal Reserve Bank of Minneapolis.
    5. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    6. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
    7. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 361-393.
    8. repec:bla:restud:v:65:y:1998:i:3:p:361-93 is not listed on IDEAS
    9. Friedman, Moshe & Harris, Lawrence, 1998. "A Maximum Likelihood Approach for Non-Gaussian Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 284-291, July.
    10. Melino, Angelo & Turnbull, Stuart M., 1990. "Pricing foreign currency options with stochastic volatility," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 239-265.
    11. repec:cup:etheor:v:10:y:1994:i:3-4:p:609-32 is not listed on IDEAS
    12. Ronald Mahieu & Peter Schotman, 1994. "Stochastic volatility and the distribution of exchange rate news," Discussion Paper / Institute for Empirical Macroeconomics 96, Federal Reserve Bank of Minneapolis.
    13. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. " On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    14. Geweke, J, 1993. "Bayesian Treatment of the Independent Student- t Linear Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages 19-40, Suppl. De.
    15. Andrew Harvey & Esther Ruiz & Neil Shephard, 1994. "Multivariate Stochastic Variance Models," Review of Economic Studies, Oxford University Press, vol. 61(2), pages 247-264.
    16. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    17. Hull, John C & White, Alan D, 1987. " The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roman Liesenfeld & Jean-Francois Richard, 2006. "Classical and Bayesian Analysis of Univariate and Multivariate Stochastic Volatility Models," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 335-360.
    2. Ishihara, Tsunehiro & Omori, Yasuhiro, 2012. "Efficient Bayesian estimation of a multivariate stochastic volatility model with cross leverage and heavy-tailed errors," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3674-3689.
    3. Fernández, C. & Steel, M.F.J., 1997. "On the Dangers of Modelling through Continuous Distributions : A Bayesian Perspective," Discussion Paper 1997-05, Tilburg University, Center for Economic Research.
    4. repec:pit:wpaper:322 is not listed on IDEAS
    5. Timothy Cogley & Thomas J. Sargent, 2005. "Drift and Volatilities: Monetary Policies and Outcomes in the Post WWII U.S," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 8(2), pages 262-302, April.
    6. repec:bla:irvfin:v:17:y:2017:i:3:p:479-490 is not listed on IDEAS
    7. Liesenfeld, Roman & Richard, Jean-Francois, 2003. "Univariate and multivariate stochastic volatility models: estimation and diagnostics," Journal of Empirical Finance, Elsevier, vol. 10(4), pages 505-531, September.
    8. Avouyi-Dovi, S. & Horny, G. & Sevestre, P., 2013. "The dynamics of bank loans short-term interest rates in the Euro area: what lessons can we draw from the current crisis?," Working papers 462, Banque de France.
    9. Fern ndez, Carmen & Steel, Mark F.J., 2000. "Bayesian Regression Analysis With Scale Mixtures Of Normals," Econometric Theory, Cambridge University Press, vol. 16(01), pages 80-101, February.
    10. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2016. "Common Drifting Volatility in Large Bayesian VARs," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 375-390, July.
    11. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility," Microeconomics Working Papers 22058, East Asian Bureau of Economic Research.
    12. Tsyplakov, Alexander, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models," MPRA Paper 25511, University Library of Munich, Germany.
    13. Meddahi, N., 2001. "An Eigenfunction Approach for Volatility Modeling," Cahiers de recherche 2001-29, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    14. Jun Yu & Renate Meyer, 2006. "Multivariate Stochastic Volatility Models: Bayesian Estimation and Model Comparison," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 361-384.
    15. Mikhail Chernov & Eric Ghysels, 1998. "What Data Should Be Used to Price Options?," CIRANO Working Papers 98s-22, CIRANO.
    16. Cogley, Timothy & Morozov, Sergei & Sargent, Thomas J., 2005. "Bayesian fan charts for U.K. inflation: Forecasting and sources of uncertainty in an evolving monetary system," Journal of Economic Dynamics and Control, Elsevier, vol. 29(11), pages 1893-1925, November.
    17. Norberto Rodríguez, 2000. "Bayesian Model Estimation and Selection for the Weekly Colombian Exchange Rate," Borradores de Economia 161, Banco de la Republica de Colombia.
    18. Danielsson, Jon, 1998. "Multivariate stochastic volatility models: Estimation and a comparison with VGARCH models," Journal of Empirical Finance, Elsevier, vol. 5(2), pages 155-173, June.
    19. Chernov, Mikhail & Ghysels, Eric, 2000. "A study towards a unified approach to the joint estimation of objective and risk neutral measures for the purpose of options valuation," Journal of Financial Economics, Elsevier, vol. 56(3), pages 407-458, June.
    20. Stavros Degiannakis & Alexandra Livada & Epaminondas Panas, 2008. "Rolling-sampled parameters of ARCH and Levy-stable models," Applied Economics, Taylor & Francis Journals, vol. 40(23), pages 3051-3067.
    21. Timothy Cogley, 2005. "Changing Beliefs and the Term Structure of Interest Rates: Cross-Equation Restrictions with Drifting Parameters," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 8(2), pages 420-451, April.
    22. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2001. "High- and Low-Frequency Exchange Rate Volatility Dynamics: Range-Based Estimation of Stochastic Volatility Models," NBER Working Papers 8162, National Bureau of Economic Research, Inc.

    More about this item

    Keywords

    Stochastic volatility; ARCH; MCMC algorithm; leverage effect; risk management; fat-tailed distributions; Volatilité stochastique; ARCH; algorithme MCMC; effets de levier; gestion de risque; distributions à queues épaisses;

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • G1 - Financial Economics - - General Financial Markets

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:99s-26. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Webmaster). General contact details of provider: http://edirc.repec.org/data/ciranca.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.