IDEAS home Printed from https://ideas.repec.org/p/cir/cirwor/99s-26.html
   My bibliography  Save this paper

Stochastic Volatility: Univariate and Multivariate Extensions

Author

Listed:
  • Eric Jacquier
  • Nicholas G. Polson
  • Peter E. Rossi

Abstract

Stochastic volatility models, aka SVOL, are more difficult to estimate than standard time-varying volatility models (ARCH). Advances in the literature now offer well tested estimators for a basic univariate SVOL model. However, the basic model is too restrictive for many economic and finance applications. The use of the basic model can lead to biased volatility forecasts especially around crucial periods of high volatility. We extend the basic SVOL needs to allow for the leverage effect, through a correlation between observable and variance errors, and fat-tails in the conditional distribution. We develop a Bayesian Markov Chain Monte Carlo algorithm for this extended model. We also provide an algorithm to analyze a multivariate factor SVOL model. The method simultaneously performs finite sample inference and smoothing. We document the performance of the estimator and show why the extensions are warranted. We provide the researcher with a range of model diagnostics, such as the identification of outliers for stochastic volatility models or the assessment of the normality of the conditional distribution. We implement this methodology on a number of univariate financial time series. There is strong evidence of (1) non-normal conditional distributions for most series, and (2) a leverage effect for stock returns. We illustrate the robustness of the results to the choice of the prior distributions. These results have policy implications on decisions based upon prediction of volatility, especially when dealing with tail prediction as in risk management. Les modèles de volatilité stochastique, alias SVOL, sont plus durs à estimer que les modèles traditionnels de type ARCH. La littérature récente offre des estimateurs éprouvés pour un modèle SVOL univarié de base. Ce modèle est trop contraignant pour une utilisation en économie financière. Les prévisions de volatilité qu'il produit peuvent etre biaisées, particulièrement quand la volatilité est élevée. Nous généralisons le modèle de base en y ajoutant des effets de levier par le biais d'une corrélation entre les chocs observables et de variance, et la possibilité de distributions conditionnelles à queues épaisses. Nous développons un algorithme bayésien à chaînes markoviennes de Monte Carlo. Nous développons aussi un algorithme pour l'analyse d'un modèle SVOL multivarié à facteurs. Ces estimateurs permettent une inférence en échantillon fini pour les paramètres et les volatilités. Nous documentons les performances de l'estimateur et montrons que les extensions sont nécessaires. Nous testons la normalité des distributions conditionnelles. Cette méthode est mise en oeuvre sur plusieurs séries financières. Il y a une forte évidence (1) de distributions conditionnelles à queues épaisses, et (2) d'effets de levier pour les actifs financiers. Les résultats sont robustes et ont d'importantes implications sur les décisions fondées sur les prédictions de volatilité, particulièrement pour la gestion de risques.

Suggested Citation

  • Eric Jacquier & Nicholas G. Polson & Peter E. Rossi, 1999. "Stochastic Volatility: Univariate and Multivariate Extensions," CIRANO Working Papers 99s-26, CIRANO.
  • Handle: RePEc:cir:cirwor:99s-26
    as

    Download full text from publisher

    File URL: https://cirano.qc.ca/files/publications/99s-26.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Geweke, John, 1994. "Priors for Macroeconomic Time Series and Their Application," Econometric Theory, Cambridge University Press, vol. 10(3-4), pages 609-632, August.
    2. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    3. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    4. Geweke, John & Zhou, Guofu, 1996. "Measuring the Pricing Error of the Arbitrage Pricing Theory," The Review of Financial Studies, Society for Financial Studies, vol. 9(2), pages 557-587.
    5. John Geweke, 1994. "Bayesian comparison of econometric models," Working Papers 532, Federal Reserve Bank of Minneapolis.
    6. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    7. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
    8. Friedman, Moshe & Harris, Lawrence, 1998. "A Maximum Likelihood Approach for Non-Gaussian Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 284-291, July.
    9. Peter F. Christoffersen & Francis X. Diebold, 2000. "How Relevant is Volatility Forecasting for Financial Risk Management?," The Review of Economics and Statistics, MIT Press, vol. 82(1), pages 12-22, February.
    10. Melino, Angelo & Turnbull, Stuart M., 1990. "Pricing foreign currency options with stochastic volatility," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 239-265.
    11. repec:cup:etheor:v:10:y:1994:i:3-4:p:609-32 is not listed on IDEAS
    12. Ronald Mahieu & Peter C. Schotman, 1994. "Stochastic volatility and the distribution of exchange rate news," Discussion Paper / Institute for Empirical Macroeconomics 96, Federal Reserve Bank of Minneapolis.
    13. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    14. Geweke, J, 1993. "Bayesian Treatment of the Independent Student- t Linear Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages 19-40, Suppl. De.
    15. Andrew Harvey & Esther Ruiz & Neil Shephard, 1994. "Multivariate Stochastic Variance Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(2), pages 247-264.
    16. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    17. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    2. Siem Jan Koopman & Eugenie Hol Uspensky, 2002. "The stochastic volatility in mean model: empirical evidence from international stock markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(6), pages 667-689.
    3. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    4. Siem Jan Koopman & Eugenie Hol Uspensky, 2000. "The Stochastic Volatility in Mean Model," Tinbergen Institute Discussion Papers 00-024/4, Tinbergen Institute.
    5. Assaf, Ata, 2006. "The stochastic volatility in mean model and automation: Evidence from TSE," The Quarterly Review of Economics and Finance, Elsevier, vol. 46(2), pages 241-253, May.
    6. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    7. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    8. Willy Alanya & Gabriel Rodríguez, 2018. "Stochastic Volatility in the Peruvian Stock Market and Exchange Rate Returns: A Bayesian Approximation," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 17(3), pages 354-385, December.
    9. Font, Begoña, 1998. "Modelización de series temporales financieras. Una recopilación," DES - Documentos de Trabajo. Estadística y Econometría. DS 3664, Universidad Carlos III de Madrid. Departamento de Estadística.
    10. Vo, Minh T., 2009. "Regime-switching stochastic volatility: Evidence from the crude oil market," Energy Economics, Elsevier, vol. 31(5), pages 779-788, September.
    11. Philipp Otto & Osman Dou{g}an & Suleyman Tac{s}p{i}nar & Wolfgang Schmid & Anil K. Bera, 2023. "Spatial and Spatiotemporal Volatility Models: A Review," Papers 2308.13061, arXiv.org.
    12. Antonis Demos, 2023. "Estimation of Asymmetric Stochastic Volatility in Mean Models," DEOS Working Papers 2309, Athens University of Economics and Business.
    13. Carmen Broto & Esther Ruiz, 2004. "Estimation methods for stochastic volatility models: a survey," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 613-649, December.
    14. Per Bjarte Solibakke, 2003. "Validity of discrete-time stochastic volatility models in non-synchronous equity markets," The European Journal of Finance, Taylor & Francis Journals, vol. 9(5), pages 420-448.
    15. Meddahi, Nour & Renault, Eric, 2004. "Temporal aggregation of volatility models," Journal of Econometrics, Elsevier, vol. 119(2), pages 355-379, April.
    16. Sascha Mergner & Jan Bulla, 2008. "Time-varying beta risk of Pan-European industry portfolios: A comparison of alternative modeling techniques," The European Journal of Finance, Taylor & Francis Journals, vol. 14(8), pages 771-802.
    17. Sandmann, Gleb & Koopman, Siem Jan, 1998. "Estimation of stochastic volatility models via Monte Carlo maximum likelihood," Journal of Econometrics, Elsevier, vol. 87(2), pages 271-301, September.
    18. Bjorn Hansson & Peter Hordahl, 2005. "Forecasting variance using stochastic volatility and GARCH," The European Journal of Finance, Taylor & Francis Journals, vol. 11(1), pages 33-57.
    19. Eric Jacquier & Nicholas G. Polson & Peter E. Rossi, 1995. "Models and Priors for Multivariate Stochastic Volatility," CIRANO Working Papers 95s-18, CIRANO.
    20. Adam Clements & Stan Hurn & Scott White, 2006. "Estimating Stochastic Volatility Models Using a Discrete Non-linear Filter. Working paper #3," NCER Working Paper Series 3, National Centre for Econometric Research.

    More about this item

    Keywords

    Stochastic volatility; ARCH; MCMC algorithm; leverage effect; risk management; fat-tailed distributions; Volatilité stochastique; ARCH; algorithme MCMC; effets de levier; gestion de risque; distributions à queues épaisses;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • G1 - Financial Economics - - General Financial Markets

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:99s-26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Webmaster (email available below). General contact details of provider: https://edirc.repec.org/data/ciranca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.