IDEAS home Printed from https://ideas.repec.org/p/cir/cirwor/95s-18.html
   My bibliography  Save this paper

Models and Priors for Multivariate Stochastic Volatility

Author

Listed:
  • Eric Jacquier
  • Nicholas G. Polson
  • Peter E. Rossi

Abstract

Discrete time stochastic volatility models (hereafter SVOL) are noticeably harder to estimate than the successful ARCH family of models. In this paper, we develop methods for finite sample inference, smoothing, and prediction for a number of univariate and multivariate SVOL models. Specifically, we model fat-tailed and skewed conditional distributions, correlated errors distributions (leverage effect), and two multivariate models, a stochastic factor structure model and a stochastic discount dynamic model. We specify the models as a hierarchy of conditional probability distributions: p(data/volatilities), p(volatilities/ parameters) and p(parameters). This hierarchy provides a natural environment for the construction of stochastic volatility models that depart from standard distributional assumptions. Given a model and the data, inference and prediction are based on the joint posterior distribution of the volatilities and the parameters which we simulate via Markov chain Monte Carlo (MCMC) methods. Our approach also provides a sensitivity analysis for parameter inference and an outlier diagnostic. Our framework, therefore, provides a general perspective on specification and implementation of stochastic volatility models. We apply various extensions of the basic SVOL model to many financial time series. We find strong evidence of non-normal conditional distributions for stock returns and exchange rates. We also find some evidence of correlated errors for stock returns. These departures from the basic model affect persistence and therefore should be incorporated if the model is used for variance prediction. Les modèles de volatilité stochastique (ci-après) SVOL sont singulièrement plus difficiles à estimer que les modèles de type ARCH qui connaissent un grand succès. Dans cet article, nous développons des méthodes en échantillons finis pour l'inférence et la prédiction, ceci pour un nombre de modèles SVOL univariés et multivariés. Plus précisément nous modélisons des distributions conditionnelles non-normales, des modèles avec effets de levier, et deux modèles multivariés; un modèle a structure de facteurs et un modèle d'escompte dynamique. Nous spécifions les modèles par une hiérarchie de distributions conditionnelles : p(données|volatilités), p(volatilités|paramètres), et p(paramètres). Cette hiérarchie fournit un environnement naturel pour l'élaboration de modèles de volatilité stochastique plus généraux que le modèle de base. Pour un modèle et un échantillon, l'inférence et la prédiction sont fondées sur la distribution postérieure jointe des volatilités et des paramètres que nous simulons avec des méthodes de Chaînes de Markov et de Monte Carlo (MCMC). Notre approche fournit aussi une analyse de sensitivité pour les paramètres et une analyse pour les outliers. Le cadre d'estimation fournit donc une perspective générale sur la spécification et l'implémentation des modèles de volatilité stochastique. Nous appliquons plusieurs extensions du modèle SVOL de base à de nombreuses séries financières. Il y a une forte évidence de non-normalité des distributions conditionnelles. Il y aussi une certaine évidence de corrélation des erreurs pour les retours sur actions. Ces élaborations du modèle de base ont une influence sur la persistance et devraient être incorporées en vue de prédictions de volatilité.

Suggested Citation

  • Eric Jacquier & Nicholas G. Polson & Peter E. Rossi, 1995. "Models and Priors for Multivariate Stochastic Volatility," CIRANO Working Papers 95s-18, CIRANO.
  • Handle: RePEc:cir:cirwor:95s-18
    as

    Download full text from publisher

    File URL: https://cirano.qc.ca/files/publications/95s-18.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Neil Shephard, 2005. "Stochastic Volatility," Economics Papers 2005-W17, Economics Group, Nuffield College, University of Oxford.
    2. Andersen, Torben G & Sorensen, Bent E, 1996. "GMM Estimation of a Stochastic Volatility Model: A Monte Carlo Study," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 328-352, July.
    3. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    4. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
    5. Danielsson, Jon, 1994. "Stochastic volatility in asset prices estimation with simulated maximum likelihood," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 375-400.
    6. Melino, Angelo & Turnbull, Stuart M., 1990. "Pricing foreign currency options with stochastic volatility," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 239-265.
    7. Ronald Mahieu & Peter C. Schotman, 1994. "Stochastic volatility and the distribution of exchange rate news," Discussion Paper / Institute for Empirical Macroeconomics 96, Federal Reserve Bank of Minneapolis.
    8. Andrew Harvey & Esther Ruiz & Neil Shephard, 1994. "Multivariate Stochastic Variance Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(2), pages 247-264.
    9. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    10. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Markus Heinrich & Magnus Reif, 2018. "Forecasting using mixed-frequency VARs with time-varying parameters," ifo Working Paper Series 273, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    2. Jacopo Cimadomo & Antonello D'Agostino, 2016. "Combining Time Variation and Mixed Frequencies: an Analysis of Government Spending Multipliers in Italy," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1276-1290, November.
    3. Pajor Anna & Wróblewska Justyna, 2017. "VEC-MSF models in Bayesian analysis of short- and long-run relationships," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 21(3), pages 1-22, June.
    4. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    5. Asai, M. & Caporin, M., 2009. "Block Structure Multivariate Stochastic Volatility Models," Econometric Institute Research Papers EI 2009-51, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    6. Hauzenberger Niko & Huber Florian & Koop Gary, 2024. "Dynamic Shrinkage Priors for Large Time-Varying Parameter Regressions Using Scalable Markov Chain Monte Carlo Methods," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 28(2), pages 201-225, April.
    7. Jeonggyu Huh, 2018. "Measuring Systematic Risk with Neural Network Factor Model," Papers 1809.04925, arXiv.org.
    8. Legrand, Romain, 2018. "Time-Varying Vector Autoregressions: Efficient Estimation, Random Inertia and Random Mean," MPRA Paper 88925, University Library of Munich, Germany.
    9. Huh, Jeonggyu, 2020. "Measuring systematic risk with neural network factor model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    10. Anna Pajor, 2005. "Bayesian Analysis of Stochastic Volatility Model and Portfolio Allocation," FindEcon Chapters: Forecasting Financial Markets and Economic Decision-Making, in: Władysław Milo & Piotr Wdowiński (ed.), Acta Universitatis Lodziensis. Folia Oeconomica nr 192/2005 - Issues in Modeling, Forecasting and Decision-Making in Financial Markets, edition 1, volume 127, chapter 14, pages 229-249, University of Lodz.
    11. Charles S. Bos, 2008. "Model-based Estimation of High Frequency Jump Diffusions with Microstructure Noise and Stochastic Volatility," Tinbergen Institute Discussion Papers 08-011/4, Tinbergen Institute.
    12. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility," Microeconomics Working Papers 22058, East Asian Bureau of Economic Research.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    2. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    3. Vo, Minh T., 2009. "Regime-switching stochastic volatility: Evidence from the crude oil market," Energy Economics, Elsevier, vol. 31(5), pages 779-788, September.
    4. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Sascha Mergner & Jan Bulla, 2008. "Time-varying beta risk of Pan-European industry portfolios: A comparison of alternative modeling techniques," The European Journal of Finance, Taylor & Francis Journals, vol. 14(8), pages 771-802.
    6. Sandmann, Gleb & Koopman, Siem Jan, 1998. "Estimation of stochastic volatility models via Monte Carlo maximum likelihood," Journal of Econometrics, Elsevier, vol. 87(2), pages 271-301, September.
    7. Font, Begoña, 1998. "Modelización de series temporales financieras. Una recopilación," DES - Documentos de Trabajo. Estadística y Econometría. DS 3664, Universidad Carlos III de Madrid. Departamento de Estadística.
    8. Siem Jan Koopman & Eugenie Hol Uspensky, 2002. "The stochastic volatility in mean model: empirical evidence from international stock markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(6), pages 667-689.
    9. G Sandmann & Siem Jan Koopman, 1996. "Maximum Likelihood Estimation of Stochastic Volatility Models," FMG Discussion Papers dp248, Financial Markets Group.
    10. Pezzo, Rosanna & Uberti, Mariacristina, 2006. "Approaches to forecasting volatility: Models and their performances for emerging equity markets," Chaos, Solitons & Fractals, Elsevier, vol. 29(3), pages 556-565.
    11. Eric Jacquier & Nicholas G. Polson & Peter Rossi, "undated". "Stochastic Volatility: Univariate and Multivariate Extensions," Rodney L. White Center for Financial Research Working Papers 19-95, Wharton School Rodney L. White Center for Financial Research.
    12. Yu, Jun & Yang, Zhenlin & Zhang, Xibin, 2006. "A class of nonlinear stochastic volatility models and its implications for pricing currency options," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2218-2231, December.
    13. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    14. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, September.
    15. Assaf, Ata, 2006. "The stochastic volatility in mean model and automation: Evidence from TSE," The Quarterly Review of Economics and Finance, Elsevier, vol. 46(2), pages 241-253, May.
    16. Gallant, A. Ronald & Hsieh, David & Tauchen, George, 1997. "Estimation of stochastic volatility models with diagnostics," Journal of Econometrics, Elsevier, vol. 81(1), pages 159-192, November.
    17. Carmen Broto & Esther Ruiz, 2004. "Estimation methods for stochastic volatility models: a survey," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 613-649, December.
    18. Berument, Hakan & Yalcin, Yeliz & Yildirim, Julide, 2009. "The effect of inflation uncertainty on inflation: Stochastic volatility in mean model within a dynamic framework," Economic Modelling, Elsevier, vol. 26(6), pages 1201-1207, November.
    19. PREMINGER, Arie & HAFNER, Christian, 2006. "Deciding between GARCH and stochastic volatility via strong decision rules," LIDAM Discussion Papers CORE 2006042, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    20. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).

    More about this item

    Keywords

    Stochastic volatility; Forecasting and smoothing; Metropolis algorithm; Volatilité stochastique ; Inférence et prédiction ; Algorythme Metropolis;
    All these keywords.

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:95s-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Webmaster (email available below). General contact details of provider: https://edirc.repec.org/data/ciranca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.