IDEAS home Printed from
   My bibliography  Save this paper

Models and Priors for Multivariate Stochastic Volatility


  • Éric Jacquier
  • Nicholas G. Polson
  • Peter E. Rossi


Discrete time stochastic volatility models (hereafter SVOL) are noticeably harder to estimate than the successful ARCH family of models. In this paper, we develop methods for finite sample inference, smoothing, and prediction for a number of univariate and multivariate SVOL models. Specifically, we model fat-tailed and skewed conditional distributions, correlated errors distributions (leverage effect), and two multivariate models, a stochastic factor structure model and a stochastic discount dynamic model. We specify the models as a hierarchy of conditional probability distributions: p(data/volatilities), p(volatilities/ parameters) and p(parameters). This hierarchy provides a natural environment for the construction of stochastic volatility models that depart from standard distributional assumptions. Given a model and the data, inference and prediction are based on the joint posterior distribution of the volatilities and the parameters which we simulate via Markov chain Monte Carlo (MCMC) methods. Our approach also provides a sensitivity analysis for parameter inference and an outlier diagnostic. Our framework, therefore, provides a general perspective on specification and implementation of stochastic volatility models. We apply various extensions of the basic SVOL model to many financial time series. We find strong evidence of non-normal conditional distributions for stock returns and exchange rates. We also find some evidence of correlated errors for stock returns. These departures from the basic model affect persistence and therefore should be incorporated if the model is used for variance prediction. Les modèles de volatilité stochastique (ci-après) SVOL sont singulièrement plus difficiles à estimer que les modèles de type ARCH qui connaissent un grand succès. Dans cet article, nous développons des méthodes en échantillons finis pour l'inférence et la prédiction, ceci pour un nombre de modèles SVOL univariés et multivariés. Plus précisément nous modélisons des distributions conditionnelles non-normales, des modèles avec effets de levier, et deux modèles multivariés; un modèle a structure de facteurs et un modèle d'escompte dynamique. Nous spécifions les modèles par une hiérarchie de distributions conditionnelles : p(données|volatilités), p(volatilités|paramètres), et p(paramètres). Cette hiérarchie fournit un environnement naturel pour l'élaboration de modèles de volatilité stochastique plus généraux que le modèle de base. Pour un modèle et un échantillon, l'inférence et la prédiction sont fondées sur la distribution postérieure jointe des volatilités et des paramètres que nous simulons avec des méthodes de Chaînes de Markov et de Monte Carlo (MCMC). Notre approche fournit aussi une analyse de sensitivité pour les paramètres et une analyse pour les outliers. Le cadre d'estimation fournit donc une perspective générale sur la spécification et l'implémentation des modèles de volatilité stochastique. Nous appliquons plusieurs extensions du modèle SVOL de base à de nombreuses séries financières. Il y a une forte évidence de non-normalité des distributions conditionnelles. Il y aussi une certaine évidence de corrélation des erreurs pour les retours sur actions. Ces élaborations du modèle de base ont une influence sur la persistance et devraient être incorporées en vue de prédictions de volatilité.

Suggested Citation

  • Éric Jacquier & Nicholas G. Polson & Peter E. Rossi, 1995. "Models and Priors for Multivariate Stochastic Volatility," CIRANO Working Papers 95s-18, CIRANO.
  • Handle: RePEc:cir:cirwor:95s-18

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Neil Shephard, 2005. "Stochastic Volatility," Economics Papers 2005-W17, Economics Group, Nuffield College, University of Oxford.
    2. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    3. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
    4. Danielsson, Jon, 1994. "Stochastic volatility in asset prices estimation with simulated maximum likelihood," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 375-400.
    5. repec:bla:restud:v:65:y:1998:i:3:p:361-93 is not listed on IDEAS
    6. Melino, Angelo & Turnbull, Stuart M., 1990. "Pricing foreign currency options with stochastic volatility," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 239-265.
    7. Ronald Mahieu & Peter Schotman, 1994. "Stochastic volatility and the distribution of exchange rate news," Discussion Paper / Institute for Empirical Macroeconomics 96, Federal Reserve Bank of Minneapolis.
    8. Andrew Harvey & Esther Ruiz & Neil Shephard, 1994. "Multivariate Stochastic Variance Models," Review of Economic Studies, Oxford University Press, vol. 61(2), pages 247-264.
    9. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    10. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Charles S. Bos, 2008. "Model-based Estimation of High Frequency Jump Diffusions with Microstructure Noise and Stochastic Volatility," Tinbergen Institute Discussion Papers 08-011/4, Tinbergen Institute.
    2. Asai, M. & Caporin, M., 2009. "Block Structure Multivariate Stochastic Volatility Models," Econometric Institute Research Papers EI 2009-51, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    3. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility," Microeconomics Working Papers 22058, East Asian Bureau of Economic Research.
    4. repec:wly:japmet:v:31:y:2016:i:7:p:1276-1290 is not listed on IDEAS

    More about this item


    Stochastic volatility; Forecasting and smoothing; Metropolis algorithm; Volatilité stochastique ; Inférence et prédiction ; Algorythme Metropolis;

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:95s-18. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Webmaster). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.