IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-02875105.html
   My bibliography  Save this paper

Testing normality: a GMM approach

Author

Listed:
  • Christian Bontemps

    (TSE - Toulouse School of Economics - UT1 - Université Toulouse 1 Capitole - Université Fédérale Toulouse Midi-Pyrénées - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, ENAC - Ecole Nationale de l'Aviation Civile)

  • Nour Meddahi

    (TSE - Toulouse School of Economics - UT1 - Université Toulouse 1 Capitole - Université Fédérale Toulouse Midi-Pyrénées - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

Abstract

In this paper, we consider testing marginal normal distributional assumptions. More precisely, we propose tests based on moment conditions implied by normality. These moment conditions are known as the Stein (Proceedings of the Sixth Berkeley Symposium on Mathematics, Statistics and Probability, Vol. 2, pp. 583-602) equations. They coincide with the first class of moment conditions derived by Hansen and Scheinkman (Econometrica 63 (1995) 767) when the random variable of interest is a scalar diffusion. Among other examples, Stein equation implies that the mean of Hermite polynomials is zero. The GMM approach we adopt is well suited for two reasons. It allows us to study in detail the parameter uncertainty problem, i.e., when the tests depend on unknown parameters that have to be estimated. In particular, we characterize the moment conditions that are robust against parameter uncertainty and show that Hermite polynomials are special examples. This is the main contribution of the paper. The second reason for using GMM is that our tests are also valid for time series. In this case, we adopt a heteroskedastic-autocorrelation-consistent approach to estimate the weighting matrix when the dependence of the data is unspecified. We also make a theoretical comparison of our tests with Jarque and Bera (Econom. Lett. 6 (1980) 255) and OPG regression tests of Davidson and MacKinnon (Estimation and Inference in Econometrics, Oxford University Press, Oxford). Finite sample properties of our tests are derived through a comprehensive Monte Carlo study. Finally, two applications to GARCH and realized volatility models are presented. (C) 2004 Published by Elsevier B.V.

Suggested Citation

  • Christian Bontemps & Nour Meddahi, 2005. "Testing normality: a GMM approach," Post-Print hal-02875105, HAL.
  • Handle: RePEc:hal:journl:hal-02875105
    DOI: 10.1016/j.jeconom.2004.02.014
    Note: View the original document on HAL open archive server: https://hal.archives-ouvertes.fr/hal-02875105
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bontemps, Christian & Meddahi, Nour, 2005. "Testing normality: a GMM approach," Journal of Econometrics, Elsevier, vol. 124(1), pages 149-186, January.
    2. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
    3. Kilian, Lutz & Demiroglu, Ufuk, 2000. "Residual-Based Tests for Normality in Autoregressions: Asymptotic Theory and Simulation Evidence," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(1), pages 40-50, January.
    4. Ait-Sahalia, Yacine, 1996. "Testing Continuous-Time Models of the Spot Interest Rate," Review of Financial Studies, Society for Financial Studies, vol. 9(2), pages 385-426.
    5. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    6. Ole E. Barndorff-Nielsen & Neil Shephard, 2002. "Estimating quadratic variation using realized variance," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 457-477.
    7. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    8. Berkowitz, Jeremy, 2001. "Testing Density Forecasts, with Applications to Risk Management," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 465-474, October.
    9. Tim Bollerslev & Jeffrey M. Wooldridge, 1988. "Quasi-Maximum Likelihood Estimation of Dynamic Models with Time-Varying Covariances," Working papers 505, Massachusetts Institute of Technology (MIT), Department of Economics.
    10. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
    11. Hansen, Lars Peter & Scheinkman, Jose Alexandre, 1995. "Back to the Future: Generating Moment Implications for Continuous-Time Markov Processes," Econometrica, Econometric Society, vol. 63(4), pages 767-804, July.
    12. Xiaohong Chen & Lars Peter Hansen & Jos´e A. Scheinkman, 2005. "Principal Components and the Long Run," Levine's Bibliography 122247000000000997, UCLA Department of Economics.
    13. Davidson, Russell & MacKinnon, James G, 1984. "Model Specification Tests Based on Artificial Linear Regressions," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 25(2), pages 485-502, June.
    14. Ronald Gallant, A. & Tauchen, George, 1999. "The relative efficiency of method of moments estimators1," Journal of Econometrics, Elsevier, vol. 92(1), pages 149-172, September.
    15. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 1999. "The Distribution of Exchange Rate Volatility," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-059, New York University, Leonard N. Stern School of Business-.
    16. Fiorentini, Gabriele & Sentana, Enrique & Calzolari, Giorgio, 2003. "Maximum Likelihood Estimation and Inference in Multivariate Conditionally Heteroscedastic Dynamic Regression Models with Student t Innovations," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(4), pages 532-546, October.
    17. Hong, Yongmiao & Li, Haitao, 2002. "Nonparametric specification testing for continuous-time models with application to spot interest rates," SFB 373 Discussion Papers 2002,32, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    18. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    19. Richardson, Matthew & Smith, Tom, 1993. "A Test for Multivariate Normality in Stock Returns," The Journal of Business, University of Chicago Press, vol. 66(2), pages 295-321, April.
    20. Bollerslev, Tim & Engle, Robert F. & Nelson, Daniel B., 1986. "Arch models," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 49, pages 2959-3038, Elsevier.
    21. Jushan Bai & Serena Ng, 2005. "Tests for Skewness, Kurtosis, and Normality for Time Series Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 49-60, January.
    22. Conley, Timothy G, et al, 1997. "Short-Term Interest Rates as Subordinated Diffusions," Review of Financial Studies, Society for Financial Studies, vol. 10(3), pages 525-577.
    23. Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-883, November.
    24. Tauchen, George, 1985. "Diagnostic testing and evaluation of maximum likelihood models," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 415-443.
    25. Andrew Harvey & Esther Ruiz & Neil Shephard, 1994. "Multivariate Stochastic Variance Models," Review of Economic Studies, Oxford University Press, vol. 61(2), pages 247-264.
    26. K. Newey, Whitney, 1985. "Generalized method of moments specification testing," Journal of Econometrics, Elsevier, vol. 29(3), pages 229-256, September.
    27. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 361-393.
    28. Davidson, Russell & MacKinnon, James G, 1992. "A New Form of the Information Matrix Test," Econometrica, Econometric Society, vol. 60(1), pages 145-157, January.
    29. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    30. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    31. Kilian, L. & Demiroglu, U., 1997. "Residual-Based Bootstrap Tests for Normality in Autoregressions," Papers 97-14, Michigan - Center for Research on Economic & Social Theory.
    32. Jean-Marie Dufour & Abdeljelil Farhat & Lucien Gardiol & Lynda Khalaf, 1998. "Simulation-based finite sample normality tests in linear regressions," Econometrics Journal, Royal Economic Society, vol. 1(Conferenc), pages 154-173.
    33. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    34. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    35. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    36. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comments: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 413-417, October.
    37. van der Klaauw, Bas & Koning, Ruud H, 2003. "Testing the Normality Assumption in the Sample Selection Model with an Application to Travel Demand," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(1), pages 31-42, January.
    38. Davidson, Russell & MacKinnon, James G., 1993. "Estimation and Inference in Econometrics," OUP Catalogue, Oxford University Press, number 9780195060119.
    39. Kiefer, Nicholas M. & Salmon, Mark, 1983. "Testing normality in econometric models," Economics Letters, Elsevier, vol. 11(1-2), pages 123-127.
    40. Thomakos, Dimitrios D. & Wang, Tao, 2003. "Realized volatility in the futures markets," Journal of Empirical Finance, Elsevier, vol. 10(3), pages 321-353, May.
    41. Corradi, Valentina & Swanson, Norman R., 2005. "Bootstrap specification tests for diffusion processes," Journal of Econometrics, Elsevier, vol. 124(1), pages 117-148, January.
    42. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    43. Wooldridge, Jeffrey M., 1990. "A Unified Approach to Robust, Regression-Based Specification Tests," Econometric Theory, Cambridge University Press, vol. 6(1), pages 17-43, March.
    44. Andersen, Torben G. & Chung, Hyung-Jin & Sorensen, Bent E., 1999. "Efficient method of moments estimation of a stochastic volatility model: A Monte Carlo study," Journal of Econometrics, Elsevier, vol. 91(1), pages 61-87, July.
    45. Ole Barndorff-Nielsen & Neil Shephard, 2000. "Non-Gaussian OU based models and some of their uses in financial economics," OFRC Working Papers Series 2000mf01, Oxford Financial Research Centre.
    46. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    47. Jushan Bai, 2003. "Testing Parametric Conditional Distributions of Dynamic Models," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 531-549, August.
    48. Jarque, Carlos M. & Bera, Anil K., 1980. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals," Economics Letters, Elsevier, vol. 6(3), pages 255-259.
    49. Amemiya, Takeshi, 1977. "The Maximum Likelihood and the Nonlinear Three-Stage Least Squares Estimator in the General Nonlinear Simultaneous Equation Model," Econometrica, Econometric Society, vol. 45(4), pages 955-968, May.
    50. Ole E. Barndorff‐Nielsen & Neil Shephard, 2001. "Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
    51. Bera, Anil K. & Jarque, Carlos M., 1981. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals : Monte Carlo Evidence," Economics Letters, Elsevier, vol. 7(4), pages 313-318.
    52. Bera, A. & John, S., 1983. "Tests for multivariate normality with Pearson alternatives," LIDAM Reprints CORE 534, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    53. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:zbw:cfswop:wp200508 is not listed on IDEAS
    2. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    3. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    4. Chen, Yi-Ting, 2012. "A simple approach to standardized-residuals-based higher-moment tests," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 427-453.
    5. Meddahi, Nour & Renault, Eric, 2004. "Temporal aggregation of volatility models," Journal of Econometrics, Elsevier, vol. 119(2), pages 355-379, April.
    6. Meddahi, N., 2001. "An Eigenfunction Approach for Volatility Modeling," Cahiers de recherche 2001-29, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    7. Bollerslev, Tim & Zhou, Hao, 2002. "Estimating stochastic volatility diffusion using conditional moments of integrated volatility," Journal of Econometrics, Elsevier, vol. 109(1), pages 33-65, July.
    8. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, August.
    9. Nour Meddahi, 2002. "A theoretical comparison between integrated and realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 479-508.
    10. P. Girardello & Orietta Nicolis & Giovanni Tondini, 2002. "Comparing conditional variance models: Theory and empirical evidence," Departmental Working Papers 2002-08, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    11. Andersen, Torben G & Sorensen, Bent E, 1996. "GMM Estimation of a Stochastic Volatility Model: A Monte Carlo Study," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 328-352, July.
    12. Yu, Jun & Yang, Zhenlin & Zhang, Xibin, 2006. "A class of nonlinear stochastic volatility models and its implications for pricing currency options," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2218-2231, December.
    13. Nour Meddahi, 2003. "ARMA representation of integrated and realized variances," Econometrics Journal, Royal Economic Society, vol. 6(2), pages 335-356, December.
    14. Yueh-Neng Lin & Ken Hung, 2008. "Is Volatility Priced?," Annals of Economics and Finance, Society for AEF, vol. 9(1), pages 39-75, May.
    15. Gallant, A. Ronald & Tauchen, George, 2002. "Simulated Score Methods and Indirect Inference for Continuous-time Models," Working Papers 02-09, Duke University, Department of Economics.
    16. Font, Begoña, 1998. "Modelización de series temporales financieras. Una recopilación," DES - Documentos de Trabajo. Estadística y Econometría. DS 3664, Universidad Carlos III de Madrid. Departamento de Estadística.
    17. Bauwens, Luc & Sucarrat, Genaro, 2010. "General-to-specific modelling of exchange rate volatility: A forecast evaluation," International Journal of Forecasting, Elsevier, vol. 26(4), pages 885-907, October.
    18. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2002. "Parametric and Nonparametric Volatility Measurement," Center for Financial Institutions Working Papers 02-27, Wharton School Center for Financial Institutions, University of Pennsylvania.
    19. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    20. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    21. Barndorff-Nielsen, Ole E. & Shephard, Neil, 2006. "Impact of jumps on returns and realised variances: econometric analysis of time-deformed Levy processes," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 217-252.

    More about this item

    Keywords

    Stein equation; Hermite polynomials; Parameter uncertainty; HAC;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02875105. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://hal.archives-ouvertes.fr/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.