IDEAS home Printed from https://ideas.repec.org/a/bes/jnlbes/v23y2005p49-60.html
   My bibliography  Save this article

Tests for Skewness, Kurtosis, and Normality for Time Series Data

Author

Listed:
  • Jushan Bai
  • Serena Ng

Abstract

We present the sampling distributions for the coefficient of skewness, kurtosis, and a joint test of normality for time series observations. In contrast to independent and identically distributed data, the limiting distributions of the statistics are shown to depend on the long run rather than the short-run variance of relevant sample moments. Monte Carlo simulations show that the test statistics for symmetry and normality have good finite sample size and power. However, size distortions render testing for kurtosis almost meaningless except for distributions with thin tails such as the normal distribution. Nevertheless, this general weakness of testing for kurtosis is of little consequence for testing normality. Combining skewness and kurtosis as in Bera and Jarque (1981) is still a useful test of normality provided the limiting variance accounts for the serial correlation in the data.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Jushan Bai & Serena Ng, 2005. "Tests for Skewness, Kurtosis, and Normality for Time Series Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 49-60, January.
  • Handle: RePEc:bes:jnlbes:v:23:y:2005:p:49-60
    as

    Download full text from publisher

    File URL: http://www.ingentaconnect.com/content/asa/jbes/2005/00000023/00000001/art00004
    File Function: full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Caballero, Ricardo J, 1992. "A Fallacy of Composition," American Economic Review, American Economic Association, vol. 82(5), pages 1279-1292, December.
    2. Andrews, Donald W K & Monahan, J Christopher, 1992. "An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator," Econometrica, Econometric Society, vol. 60(4), pages 953-966, July.
    3. J. Bradford De Long & Lawrence H. Summers, 1984. "Are Business Cycles Symmetric?," NBER Working Papers 1444, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zacharias Psaradakis & Martin Sola, 2003. "On detrending and cyclical asymmetry," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(3), pages 271-289.
    2. Matteo Mogliani, 2010. "Residual-based tests for cointegration and multiple deterministic structural breaks: A Monte Carlo study," Working Papers halshs-00564897, HAL.
    3. Dufour, J.M., 2001. "Logique et tests d'hypotheses: reflexions sur les problemes mal poses en econometrie," Cahiers de recherche 2001-15, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    4. Davide Pettenuzzo & Francesco Ravazzolo, 2016. "Optimal Portfolio Choice Under Decision‐Based Model Combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1312-1332, November.
    5. van Amano, Robert A & Norden, Simon, 1998. "Exchange Rates and Oil Prices," Review of International Economics, Wiley Blackwell, vol. 6(4), pages 683-694, November.
    6. Gabriel Vasco J. & Alexandre Fernando & Bação Pedro, 2008. "The Consumption-Wealth Ratio under Asymmetric Adjustment," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(4), pages 1-32, December.
    7. Hyeongwoo Kim & Wen Shi & Hyun Hak Kim, 2020. "Forecasting financial stress indices in Korea: a factor model approach," Empirical Economics, Springer, vol. 59(6), pages 2859-2898, December.
    8. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2015. "Realtime nowcasting with a Bayesian mixed frequency model with stochastic volatility," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(4), pages 837-862, October.
    9. Westerlund, Joakim, 2003. "Feasible Estimation in Cointegrated Panels," Working Papers 2003:12, Lund University, Department of Economics, revised 10 Nov 2003.
    10. Kruse, Robinson & Leschinski, Christian & Will, Michael, 2016. "Comparing Predictive Accuracy under Long Memory - With an Application to Volatility Forecasting," Hannover Economic Papers (HEP) dp-571, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    11. Blomquist, Johan & Westerlund, Joakim, 2013. "Testing slope homogeneity in large panels with serial correlation," Economics Letters, Elsevier, vol. 121(3), pages 374-378.
    12. Allen, Jason & Gregory, Allan W. & Shimotsu, Katsumi, 2011. "Empirical likelihood block bootstrapping," Journal of Econometrics, Elsevier, vol. 161(2), pages 110-121, April.
    13. Lucchetti, Riccardo & Palomba, Giulio, 2009. "Nonlinear adjustment in US bond yields: An empirical model with conditional heteroskedasticity," Economic Modelling, Elsevier, vol. 26(3), pages 659-667, May.
    14. Horváth, Lajos & Rice, Gregory & Whipple, Stephen, 2016. "Adaptive bandwidth selection in the long run covariance estimator of functional time series," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 676-693.
    15. Gabriel, Vasco J. & Psaradakis, Zacharias & Sola, Martin, 2002. "A simple method of testing for cointegration subject to multiple regime changes," Economics Letters, Elsevier, vol. 76(2), pages 213-221, July.
    16. Han, Heejoon & Park, Joon Y., 2008. "Time series properties of ARCH processes with persistent covariates," Journal of Econometrics, Elsevier, vol. 146(2), pages 275-292, October.
    17. Antonio Gargano & Davide Pettenuzzo & Allan Timmermann, 2019. "Bond Return Predictability: Economic Value and Links to the Macroeconomy," Management Science, INFORMS, vol. 65(2), pages 508-540, February.
    18. Jamel Jouini, 2009. "Analysis of structural break models based on the evolutionary spectrum: Monte Carlo study and application," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(1), pages 91-110.
    19. Driver, Ciaran & Trapani, Lorenzo & Urga, Giovanni, 2013. "On the use of cross-sectional measures of forecast uncertainty," International Journal of Forecasting, Elsevier, vol. 29(3), pages 367-377.
    20. Günes Kamber & Madhusudan Mohanty & James Morley, 2020. "What drives inflation in advanced and emerging market economies?," BIS Papers chapters, in: Bank for International Settlements (ed.), Inflation dynamics in Asia and the Pacific, volume 111, pages 21-36, Bank for International Settlements.

    More about this item

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlbes:v:23:y:2005:p:49-60. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: http://www.amstat.org/publications/jbes/index.cfm?fuseaction=main .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.