IDEAS home Printed from https://ideas.repec.org/a/eee/empfin/v80y2025ics0927539824001129.html
   My bibliography  Save this article

A revisit to bias-adjusted predictive regression

Author

Listed:
  • Xu, Ke-Li

Abstract

We consider robust inference of predictive regression based on bias correction. We propose new variance estimators which can accommodate conditionally heteroskedastic and serially correlated errors, and predictors with unspecified dependence structure. We also present a previously overlooked robustness property of the existing variance estimator. Empirically we illustrate the methods with a classical application to stock return and dividend growth predictability.

Suggested Citation

  • Xu, Ke-Li, 2025. "A revisit to bias-adjusted predictive regression," Journal of Empirical Finance, Elsevier, vol. 80(C).
  • Handle: RePEc:eee:empfin:v:80:y:2025:i:c:s0927539824001129
    DOI: 10.1016/j.jempfin.2024.101578
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0927539824001129
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jempfin.2024.101578?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Amihud, Yakov & Hurvich, Clifford M., 2004. "Predictive Regressions: A Reduced-Bias Estimation Method," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 39(4), pages 813-841, December.
    2. Laurent Barras & Patrick Gagliardini & Olivier Scaillet, 2022. "Skill, Scale, and Value Creation in the Mutual Fund Industry," Journal of Finance, American Finance Association, vol. 77(1), pages 601-638, February.
    3. Robin Greenwood & Samuel G. Hanson, 2015. "Waves in Ship Prices and Investment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 130(1), pages 55-109.
    4. Ke-Li Xu & Lauren Cohen, 2020. "Testing for Multiple-Horizon Predictability: Direct Regression Based versus Implication Based," The Review of Financial Studies, Society for Financial Studies, vol. 33(9), pages 4403-4443.
    5. Kothari, S. P. & Shanken, Jay, 1997. "Book-to-market, dividend yield, and expected market returns: A time-series analysis," Journal of Financial Economics, Elsevier, vol. 44(2), pages 169-203, May.
    6. Campbell, John Y. & Yogo, Motohiro, 2006. "Efficient tests of stock return predictability," Journal of Financial Economics, Elsevier, vol. 81(1), pages 27-60, July.
    7. Yakov Amihud & Clifford M. Hurvich & Yi Wang, 2009. "Multiple-Predictor Regressions: Hypothesis Testing," The Review of Financial Studies, Society for Financial Studies, vol. 22(1), pages 413-434, January.
    8. David Romer, 2020. "In Praise of Confidence Intervals," AEA Papers and Proceedings, American Economic Association, vol. 110, pages 55-60, May.
    9. Stambaugh, Robert F., 1999. "Predictive regressions," Journal of Financial Economics, Elsevier, vol. 54(3), pages 375-421, December.
    10. Amihud, Yakov & Hurvich, Clifford M. & Wang, Yi, 2010. "Predictive regression with order-p autoregressive predictors," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 513-525, June.
    11. Engel, Charles & Kazakova, Katya & Wang, Mengqi & Xiang, Nan, 2022. "A reconsideration of the failure of uncovered interest parity for the U.S. dollar," Journal of International Economics, Elsevier, vol. 136(C).
    12. David E. Rapach & Jack K. Strauss & Guofu Zhou, 2013. "International Stock Return Predictability: What Is the Role of the United States?," Journal of Finance, American Finance Association, vol. 68(4), pages 1633-1662, August.
    13. Ke-Li Xu & Junjie Guo, 2024. "A New Test for Multiple Predictive Regression," Journal of Financial Econometrics, Oxford University Press, vol. 22(1), pages 119-156.
    14. Møller, Stig V. & Rangvid, Jesper, 2015. "End-of-the-year economic growth and time-varying expected returns," Journal of Financial Economics, Elsevier, vol. 115(1), pages 136-154.
    15. Jeffrey M. Wooldridge, 2015. "Control Function Methods in Applied Econometrics," Journal of Human Resources, University of Wisconsin Press, vol. 50(2), pages 420-445.
    16. Back, Kerry & Crotty, Kevin & Kazempour, Seyed Mohammad, 2022. "Validity, tightness, and forecasting power of risk premium bounds," Journal of Financial Economics, Elsevier, vol. 144(3), pages 732-760.
    17. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    18. Peter C. B. Phillips, 2014. "On Confidence Intervals for Autoregressive Roots and Predictive Regression," Econometrica, Econometric Society, vol. 82(3), pages 1177-1195, May.
    19. Victoria Atanasov & Stig V. Møller & Richard Priestley, 2020. "Consumption Fluctuations and Expected Returns," Journal of Finance, American Finance Association, vol. 75(3), pages 1677-1713, June.
    20. Ben-Rephael, Azi & Choi, Jaewon & Goldstein, Itay, 2021. "Mutual fund flows and fluctuations in credit and business cycles," Journal of Financial Economics, Elsevier, vol. 139(1), pages 84-108.
    21. Andrews, Donald W K & Monahan, J Christopher, 1992. "An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator," Econometrica, Econometric Society, vol. 60(4), pages 953-966, July.
    22. Michael Johannes & Arthur Korteweg & Nicholas Polson, 2014. "Sequential Learning, Predictability, and Optimal Portfolio Returns," Journal of Finance, American Finance Association, vol. 69(2), pages 611-644, April.
    23. Boudoukh, Jacob & Israel, Ronen & Richardson, Matthew, 2022. "Biases in long-horizon predictive regressions," Journal of Financial Economics, Elsevier, vol. 145(3), pages 937-969.
    24. Joni Kokkonen & Matti Suominen, 2015. "Hedge Funds and Stock Market Efficiency," Management Science, INFORMS, vol. 61(12), pages 2890-2904, December.
    25. Alexandros Kostakis & Tassos Magdalinos & Michalis P. Stamatogiannis, 2015. "Robust Econometric Inference for Stock Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 28(5), pages 1506-1553.
    26. Heckman, James J. & Robb, Richard Jr., 1985. "Alternative methods for evaluating the impact of interventions : An overview," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 239-267.
    27. Golez, Benjamin & Koudijs, Peter, 2018. "Four centuries of return predictability," Journal of Financial Economics, Elsevier, vol. 127(2), pages 248-263.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Demetrescu, Matei & Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2023. "Transformed regression-based long-horizon predictability tests," Journal of Econometrics, Elsevier, vol. 237(2).
    2. Demetrescu, Matei & Rodrigues, Paulo M.M., 2022. "Residual-augmented IVX predictive regression," Journal of Econometrics, Elsevier, vol. 227(2), pages 429-460.
    3. Christis Katsouris, 2023. "Predictability Tests Robust against Parameter Instability," Papers 2307.15151, arXiv.org.
    4. Boudoukh, Jacob & Israel, Ronen & Richardson, Matthew, 2022. "Biases in long-horizon predictive regressions," Journal of Financial Economics, Elsevier, vol. 145(3), pages 937-969.
    5. Charles, Amélie & Darné, Olivier & Kim, Jae H., 2017. "International stock return predictability: Evidence from new statistical tests," International Review of Financial Analysis, Elsevier, vol. 54(C), pages 97-113.
    6. Ren, Yu & Tu, Yundong & Yi, Yanping, 2019. "Balanced predictive regressions," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 118-142.
    7. Yu, Deshui & Huang, Difang & Chen, Li & Li, Luyang, 2023. "Forecasting dividend growth: The role of adjusted earnings yield," Economic Modelling, Elsevier, vol. 120(C).
    8. Yu, Deshui & Chen, Li, 2024. "Local predictability of stock returns and cash flows," Journal of Empirical Finance, Elsevier, vol. 77(C).
    9. Yu, Deshui & Huang, Difang, 2023. "Cross-sectional uncertainty and expected stock returns," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 321-340.
    10. Peter C.B. Phillips & Ye Chen, "undated". "Restricted Likelihood Ratio Tests in Predictive Regression," Cowles Foundation Discussion Papers 1968, Cowles Foundation for Research in Economics, Yale University.
    11. Lorenzo Camponovo & O. Scaillet & Fabio Trojani, 2013. "Predictability Hidden by Anomalous Observations," Swiss Finance Institute Research Paper Series 13-05, Swiss Finance Institute.
    12. Jacob Boudoukh & Ronen Israel & Matthew P. Richardson, 2020. "Biases in Long-Horizon Predictive Regressions," NBER Working Papers 27410, National Bureau of Economic Research, Inc.
    13. Phillips, Peter C.B. & Lee, Ji Hyung, 2013. "Predictive regression under various degrees of persistence and robust long-horizon regression," Journal of Econometrics, Elsevier, vol. 177(2), pages 250-264.
    14. Yu, Deshui & Huang, Difang & Chen, Li, 2023. "Stock return predictability and cyclical movements in valuation ratios," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 36-53.
    15. Ilaria Piatti & Fabio Trojani, 2020. "Dividend Growth Predictability and the Price–Dividend Ratio," Management Science, INFORMS, vol. 66(1), pages 130-158, January.
    16. Engsted, Tom & Pedersen, Thomas Q., 2012. "Return predictability and intertemporal asset allocation: Evidence from a bias-adjusted VAR model," Journal of Empirical Finance, Elsevier, vol. 19(2), pages 241-253.
    17. Ana Sofia Monteiro & Helder Sebastião & Nuno Silva, 2025. "Prediction and Allocation of Stocks, Bonds, and REITs in the US Market," Computational Economics, Springer;Society for Computational Economics, vol. 65(3), pages 1191-1230, March.
    18. Maynard, Alex & Shimotsu, Katsumi & Kuriyama, Nina, 2024. "Inference in predictive quantile regressions," Journal of Econometrics, Elsevier, vol. 245(1).
    19. Demetrescu, Matei & Georgiev, Iliyan & Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2023. "Extensions to IVX methods of inference for return predictability," Journal of Econometrics, Elsevier, vol. 237(2).
    20. Victoria Atanasov & Stig V. Møller & Richard Priestley, 2020. "Consumption Fluctuations and Expected Returns," Journal of Finance, American Finance Association, vol. 75(3), pages 1677-1713, June.

    More about this item

    Keywords

    Bias correction; Conditional heteroskedasticity; Predictive regression; Robust inference;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:empfin:v:80:y:2025:i:c:s0927539824001129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jempfin .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.