IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/942.html
   My bibliography  Save this paper

An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator

Author

Abstract

This paper considers a new class of heteroskedasticity and autocorrelation consistent (HAC) covariance matrix estimators. The estimators considered are prewhitened kernel estimators with vector autoregressions employed in the prewhitening stage. The paper establishes consistency, rate of convergence, and asymptotic truncated mean squared error (MSE) results for the estimators when a fixed or automatic bandwidth procedure is employed. Conditions are obtained under which prewhitening improves asymptotic truncated MSE. Monte Carlo results show that prewhitening is very effective in reducing bias, improving confidence interval coverage probabilities, and rescuing over-rejection of t-statistics constructed using kernel-HAC estimators. On the other hand, prewhitening is found to inflate variance and MSE of the kernel estimators. Since confidence interval coverage probabilities and over-rejection of t-statistics are usually of primary concern, prewhitened kernel estimators provide a significant improvement over the standard non-prewhitened kernel estimators.

Suggested Citation

  • Donald W.K. Andrews & Christopher J. Monahan, 1990. "An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator," Cowles Foundation Discussion Papers 942, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:942
    Note: CFP 814.
    as

    Download full text from publisher

    File URL: https://cowles.yale.edu/sites/default/files/files/pub/d09/d0942.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Levine, David, 1983. "A remark on serial correlation in maximum likelihood," Journal of Econometrics, Elsevier, vol. 23(3), pages 337-342, December.
    2. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    3. Davidson, Russell & MacKinnon, James G., 1981. "Efficient estimation of tail-area probabilities in sampling experiments," Economics Letters, Elsevier, vol. 8(1), pages 73-77.
    4. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    5. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    6. Magnus, J.R. & Neudecker, H., 1979. "The commutation matrix : Some properties and applications," Other publications TiSEM d0b1e779-7795-4676-ac98-1, Tilburg University, School of Economics and Management.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    2. Fitzenberger, Bernd, 1998. "The moving blocks bootstrap and robust inference for linear least squares and quantile regressions," Journal of Econometrics, Elsevier, vol. 82(2), pages 235-287, February.
    3. Yongmiao Hong & Jin Lee, 2000. "Wavelet-based Estimation for Heteroskedasticity and Autocorrelation Consistent Variance-Covariance Matrices," Econometric Society World Congress 2000 Contributed Papers 1211, Econometric Society.
    4. Paulo M.D.C. Parente & Richard J. Smith, 2018. "Quasi-Maximum Likelihood and the Kernel Block Bootstrap for Nonlinear Dynamic Models," Working Papers REM 2018/59, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    5. Hansen, Lars Peter & Heaton, John & Luttmer, Erzo G J, 1995. "Econometric Evaluation of Asset Pricing Models," Review of Financial Studies, Society for Financial Studies, vol. 8(2), pages 237-274.
    6. Aleksejs Krecetovs & Pasquale Della Corte, 2016. "Macro uncertainty and currency premia," 2016 Meeting Papers 624, Society for Economic Dynamics.
    7. Frank Kleibergen, 2004. "Expansions of GMM statistics that indicate their properties under weak and/or many instruments and the bootstrap," Econometric Society 2004 North American Summer Meetings 408, Econometric Society.
    8. Richard H. Clarida & Lucio Sarno & Mark P. Taylor & Giorgio Valente, 2006. "The Role of Asymmetries and Regime Shifts in the Term Structure of Interest Rates," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1193-1224, May.
    9. Ferdinand Dreher & Johannes Gräb & Thomas Kostka, 2020. "From carry trades to curvy trades," The World Economy, Wiley Blackwell, vol. 43(3), pages 758-780, March.
    10. Kleibergen, Frank & Paap, Richard, 2006. "Generalized reduced rank tests using the singular value decomposition," Journal of Econometrics, Elsevier, vol. 133(1), pages 97-126, July.
    11. Clémentine Florens & Eric Jondeau & Hervé Le Bihan, 2001. "Assessing GMM Estimates of the Federal Reserve Reaction Function," Econometrics 0111003, University Library of Munich, Germany.
    12. Faff, Robert & Gray, Philip, 2006. "On the estimation and comparison of short-rate models using the generalised method of moments," Journal of Banking & Finance, Elsevier, vol. 30(11), pages 3131-3146, November.
    13. Mikio Ito & Akihiko Noda, 2012. "The GEL estimates resolve the risk-free rate puzzle in Japan," Applied Financial Economics, Taylor & Francis Journals, vol. 22(5), pages 365-374, March.
    14. Hansen, Lars Peter & Jagannathan, Ravi, 1997. "Assessing Specification Errors in Stochastic Discount Factor Models," Journal of Finance, American Finance Association, vol. 52(2), pages 557-590, June.
    15. Härdle, Wolfgang & Horowitz, Joel L. & Kreiss, Jens-Peter, 2001. "Bootstrap methods for time series," SFB 373 Discussion Papers 2001,59, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    16. Manabu Asai & Michael McAleer, 2017. "A fractionally integrated Wishart stochastic volatility model," Econometric Reviews, Taylor & Francis Journals, vol. 36(1-3), pages 42-59, March.
    17. Smith, Richard J., 2005. "Automatic Positive Semidefinite Hac Covariance Matrix And Gmm Estimation," Econometric Theory, Cambridge University Press, vol. 21(1), pages 158-170, February.
    18. West, Kenneth D., 2006. "Forecast Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 3, pages 99-134, Elsevier.
    19. Andersen, Torben G. & Sorensen, Bent E., 1997. "GMM and QML asymptotic standard deviations in stochastic volatility models: Comments on Ruiz (1994)," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 397-403.
    20. Bekaert, Geert & Hodrick, Robert J. & Marshall, David A., 1997. "On biases in tests of the expectations hypothesis of the term structure of interest rates," Journal of Financial Economics, Elsevier, vol. 44(3), pages 309-348, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:942. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Matthew Regan). General contact details of provider: https://edirc.repec.org/data/cowleus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.