IDEAS home Printed from
   My bibliography  Save this paper

Wavelet-based Estimation for Heteroskedasticity and Autocorrelation Consistent Variance-Covariance Matrices


  • Yongmiao Hong

    (Cornell University)

  • Jin Lee

    (Cornell University)


As is well-known, a heteroskedasticity and autocorrelation consistent covariance matrix is proportional to a spectral density matrix at frequency zero and can be consistently estimated by such popular kernel methods as those of Andrews-Newey-West. In practice, it is difficult to estimate the spectral density matrix if it has a peak at frequency zero, which can arise when there is strong autocorrelation, as often encountered in economic and financial time series. Kernels, as a local averaging method, tend to underestimate the peak, thus leading to strong overrejection in testing and overly narrow confidence intervals in estimation. As a new mathematical tool generalizing Fourier transform, wavelet transform is a powerful tool to investigate such local properties as peaks and spikes, and thus is suitable for estimating covariance matrices. In this paper, we propose a class of wavelet estimators for the covariance matrices of econometric parameter estimators. We show the consistency of the wavelet-based covariance estimators and derive their asymptotic mean squared errors, which provide insight into the smoothing nature of wavelet estimation. We propose a data-driven method to select the finest scale---the smoothing parameter in wavelet estimation, making the wavelet estimators operational in practice. A simulation study compares the finite sample performances of the wavelet estimators and the kernel counterparts. As expected, the wavelet method outperforms the kernel method when there exists relatively strong autocorrelation in the data.

Suggested Citation

  • Yongmiao Hong & Jin Lee, 2000. "Wavelet-based Estimation for Heteroskedasticity and Autocorrelation Consistent Variance-Covariance Matrices," Econometric Society World Congress 2000 Contributed Papers 1211, Econometric Society.
  • Handle: RePEc:ecm:wc2000:1211

    Download full text from publisher

    File URL:
    File Function: main text
    Download Restriction: no

    References listed on IDEAS

    1. Levine, David, 1983. "A remark on serial correlation in maximum likelihood," Journal of Econometrics, Elsevier, vol. 23(3), pages 337-342, December.
    2. Chistiano, Lawrence J & den Haan, Wouter J, 1996. "Small-Sample Properties of GMM for Business-Cycle Analysis," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 309-327, July.
    3. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    4. Whitney K. Newey & Kenneth D. West, 1994. "Automatic Lag Selection in Covariance Matrix Estimation," Review of Economic Studies, Oxford University Press, vol. 61(4), pages 631-653.
    5. Keener, Robert W. & Kmenta, Jan & Weber, Neville C., 1991. "Estimation of the Covariance Matrix of the Least-Squares Regression Coefficients When the Disturbance Covariance Matrix Is of Unknown Form," Econometric Theory, Cambridge University Press, vol. 7(01), pages 22-45, March.
    6. Hansen, Bruce E, 1992. "Consistent Covariance Matrix Estimation for Dependent Heterogeneous Processes," Econometrica, Econometric Society, vol. 60(4), pages 967-972, July.
    7. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    8. Cochrane, John H, 1988. "How Big Is the Random Walk in GNP?," Journal of Political Economy, University of Chicago Press, vol. 96(5), pages 893-920, October.
    9. Nicholas M. Kiefer & Timothy J. Vogelsang & Helle Bunzel, 2000. "Simple Robust Testing of Regression Hypotheses," Econometrica, Econometric Society, vol. 68(3), pages 695-714, May.
    10. White, Halbert & Domowitz, Ian, 1984. "Nonlinear Regression with Dependent Observations," Econometrica, Econometric Society, vol. 52(1), pages 143-161, January.
    11. Andrews, Donald W K & Monahan, J Christopher, 1992. "An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator," Econometrica, Econometric Society, vol. 60(4), pages 953-966, July.
    12. Kool, J.T.C., 1988. "A note on consistent estimation of heteroskedastic and autocorrelated covariance matrices," Serie Research Memoranda 0021, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    13. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 33(1), pages 125-132.
    14. Phillips, P. C. B. & Ouliaris, S., 1988. "Testing for cointegration using principal components methods," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 205-230.
    15. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Ramazan Gencay & Nikola Gradojevic, 2009. "Errors-in-Variables Estimation with No Instruments," Working Paper series 30_09, Rimini Centre for Economic Analysis.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:wc2000:1211. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.