IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Higher-Order Accurate, Positive Semi-definite Estimation of Large-Sample Covariance and Spectral Density Matrices

  • Politis, D N
Registered author(s):

    A new class of large-sample covariance and spectral density matrix estimators is proposed based on the notion of flat-top kernels. The new estimators are shown to be higher-order accurate when higher-order accuracy is possible. A discussion on kernel choice is presented as well as a supporting finite-sample simulation. The problem of spectral estimation under a potential lack of finite fourth moments is also addressed. The higher-order accuracy of flat-top kernel estimators typically comes at the sacrifice of the positive semi-definite property. Nevertheless, we show how a flat-top estimator can be modified to become positive semi-definite (even strictly positive definite) while maintaining its higher-order accuracy. In addition, an easy (and consistent) procedure for optimal bandwidth choice is given; this procedure estimates the optimal bandwidth associated with each individual element of the target matrix, automatically sensing (and adapting to) the underlying correlation structure.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.escholarship.org/uc/item/66w826hz.pdf;origin=repeccitec
    Download Restriction: no

    Paper provided by Department of Economics, UC San Diego in its series University of California at San Diego, Economics Working Paper Series with number qt66w826hz.

    as
    in new window

    Length:
    Date of creation: 02 Mar 2009
    Date of revision:
    Handle: RePEc:cdl:ucsdec:qt66w826hz
    Contact details of provider: Postal: 9500 Gilman Drive, La Jolla, CA 92093-0508
    Phone: (858) 534-3383
    Fax: (858) 534-7040
    Web page: http://www.escholarship.org/repec/ucsdecon/

    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-54, July.
    2. Peter C. B. Phillips & Yixiao Sun & Sainan Jin, 2006. "Spectral Density Estimation And Robust Hypothesis Testing Using Steep Origin Kernels Without Truncation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(3), pages 837-894, 08.
    3. Jiti Gao & Irene Gijbels, 2009. "Bandwidth Selection in Nonparametric Kernel Testing," School of Economics Working Papers 2009-01, University of Adelaide, School of Economics.
    4. Velasco, Carlos & Robinson, Peter M., 2001. "Edgeworth Expansions For Spectral Density Estimates And Studentized Sample Mean," Econometric Theory, Cambridge University Press, vol. 17(03), pages 497-539, June.
    5. Peter Hall & Qiwei Yao, 2003. "Inference in Arch and Garch Models with Heavy--Tailed Errors," Econometrica, Econometric Society, vol. 71(1), pages 285-317, January.
    6. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-58, May.
    7. Dimitris N. Politis, 2004. "A Heavy-Tailed Distribution for ARCH Residuals with Application to Volatility Prediction," Annals of Economics and Finance, Society for AEF, vol. 5(2), pages 283-298, November.
    8. Newey, Whitney K & West, Kenneth D, 1994. "Automatic Lag Selection in Covariance Matrix Estimation," Review of Economic Studies, Wiley Blackwell, vol. 61(4), pages 631-53, October.
    9. Hansen, Bruce E, 1992. "Consistent Covariance Matrix Estimation for Dependent Heterogeneous Processes," Econometrica, Econometric Society, vol. 60(4), pages 967-72, July.
    10. Andrews, Donald W.K., 2002. "EQUIVALENCE OF THE HIGHER ORDER ASYMPTOTIC EFFICIENCY OF k-STEP AND EXTREMUM STATISTICS," Econometric Theory, Cambridge University Press, vol. 18(05), pages 1040-1085, October.
    11. West, Kenneth D., 1997. "Another heteroskedasticity- and autocorrelation-consistent covariance matrix estimator," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 171-191.
    12. Yixiao Sun & Peter C. B. Phillips & Sainan Jin, 2006. "Optimal Bandwidth Selection in Heteroskedasticity-Autocorrelation Robust Testing," Cowles Foundation Discussion Papers 1545, Cowles Foundation for Research in Economics, Yale University.
    13. Robinson, P M, 1991. "Automatic Frequency Domain Inference on Semiparametric and Nonparametric Models," Econometrica, Econometric Society, vol. 59(5), pages 1329-63, September.
    14. Inoue, Atsushi & Shintani, Mototsugu, 2006. "Bootstrapping GMM estimators for time series," Journal of Econometrics, Elsevier, vol. 133(2), pages 531-555, August.
    15. Nigar Hashimzade & Timothy J. Vogelsang, 2008. "Fixed-b asymptotic approximation of the sampling behaviour of nonparametric spectral density estimators," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(1), pages 142-162, 01.
    16. Dimitris Politis & Halbert White, 2004. "Automatic Block-Length Selection for the Dependent Bootstrap," Econometric Reviews, Taylor & Francis Journals, vol. 23(1), pages 53-70.
    17. Kiefer, Nicholas M. & Vogelsang, Timothy J., 2005. "A New Asymptotic Theory For Heteroskedasticity-Autocorrelation Robust Tests," Econometric Theory, Cambridge University Press, vol. 21(06), pages 1130-1164, December.
    18. Donald W.K. Andrews & Christopher J. Monahan, 1990. "An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator," Cowles Foundation Discussion Papers 942, Cowles Foundation for Research in Economics, Yale University.
    19. Yixiao Sun & Peter C.B. Phillips, 2008. "Optimal Bandwidth Choice for Interval Estimation in GMM Regression," Cowles Foundation Discussion Papers 1661, Cowles Foundation for Research in Economics, Yale University.
    20. Nicholas M. Kiefer & Timothy J. Vogelsang, 2002. "Heteroskedasticity-Autocorrelation Robust Standard Errors Using The Bartlett Kernel Without Truncation," Econometrica, Econometric Society, vol. 70(5), pages 2093-2095, September.
    21. Politis, Dimitris N., 2004. "A heavy-tailed distribution for ARCH residuals with application to volatility prediction," University of California at San Diego, Economics Working Paper Series qt7r89639x, Department of Economics, UC San Diego.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:cdl:ucsdec:qt66w826hz. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Lisa Schiff)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.