IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/1661.html
   My bibliography  Save this paper

Optimal Bandwidth Choice for Interval Estimation in GMM Regression

Author

Listed:

Abstract

In time series regression with nonparametrically autocorrelated errors, it is now standard empirical practice to construct confidence intervals for regression coefficients on the basis of nonparametrically studentized t-statistics. The standard error used in the studentization is typically estimated by a kernel method that involves some smoothing process over the sample autocovariances. The underlying parameter (M) that controls this tuning process is a bandwidth or truncation lag and it plays a key role in the finite sample properties of tests and the actual coverage properties of the associated confidence intervals. The present paper develops a bandwidth choice rule for M that optimizes the coverage accuracy of interval estimators in the context of linear GMM regression. The optimal bandwidth balances the asymptotic variance with the asymptotic bias of the robust standard error estimator. This approach contrasts with the conventional bandwidth choice rule for nonparametric estimation where the focus is the nonparametric quantity itself and the choice rule balances asymptotic variance with squared asymptotic bias. It turns out that the optimal bandwidth for interval estimation has a different expansion rate and is typically substantially larger than the optimal bandwidth for point estimation of the standard errors. The new approach to bandwidth choice calls for refined asymptotic measurement of the coverage probabilities, which are provided by means of an Edgeworth expansion of the finite sample distribution of the nonparametrically studentized t-statistic. This asymptotic expansion extends earlier work and is of independent interest. A simple plug-in procedure for implementing this optimal bandwidth is suggested and simulations confirm that the new plug-in procedure works well in finite samples. Issues of interval length and false coverage probability are also considered, leading to a secondary approach to bandwidth selection with similar properties.

Suggested Citation

  • Yixiao Sun & Peter C.B. Phillips, 2008. "Optimal Bandwidth Choice for Interval Estimation in GMM Regression," Cowles Foundation Discussion Papers 1661, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:1661
    as

    Download full text from publisher

    File URL: https://cowles.yale.edu/sites/default/files/files/pub/d16/d1661.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Severini,Thomas A., 2005. "Elements of Distribution Theory," Cambridge Books, Cambridge University Press, number 9780521844727.
    2. Andrews, Donald W.K., 2002. "EQUIVALENCE OF THE HIGHER ORDER ASYMPTOTIC EFFICIENCY OF k-STEP AND EXTREMUM STATISTICS," Econometric Theory, Cambridge University Press, vol. 18(5), pages 1040-1085, October.
    3. Taniguchi, Masanobu & Puri, Madan L., 1996. "Valid Edgeworth Expansions of M-Estimators in Regression Models with Weakly Dependent Resfduals," Econometric Theory, Cambridge University Press, vol. 12(2), pages 331-346, June.
    4. Velasco, Carlos & Robinson, Peter M., 2001. "Edgeworth Expansions For Spectral Density Estimates And Studentized Sample Mean," Econometric Theory, Cambridge University Press, vol. 17(3), pages 497-539, June.
    5. Whitney K. Newey & Kenneth D. West, 1994. "Automatic Lag Selection in Covariance Matrix Estimation," Review of Economic Studies, Oxford University Press, vol. 61(4), pages 631-653.
    6. Rothenberg, Thomas J., 1984. "Approximating the distributions of econometric estimators and test statistics," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 15, pages 881-935, Elsevier.
    7. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    8. Robert M. De Jong & James Davidson, 2000. "Consistency of Kernel Estimators of Heteroscedastic and Autocorrelated Covariance Matrices," Econometrica, Econometric Society, vol. 68(2), pages 407-424, March.
    9. Abadir,Karim M. & Magnus,Jan R., 2005. "Matrix Algebra," Cambridge Books, Cambridge University Press, number 9780521537469.
    10. Nicholas M. Kiefer & Timothy J. Vogelsang & Helle Bunzel, 2000. "Simple Robust Testing of Regression Hypotheses," Econometrica, Econometric Society, vol. 68(3), pages 695-714, May.
    11. Andrews, Donald W K & Monahan, J Christopher, 1992. "An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator," Econometrica, Econometric Society, vol. 60(4), pages 953-966, July.
    12. Kiefer, Nicholas M. & Vogelsang, Timothy J., 2005. "A New Asymptotic Theory For Heteroskedasticity-Autocorrelation Robust Tests," Econometric Theory, Cambridge University Press, vol. 21(6), pages 1130-1164, December.
    13. Inoue, Atsushi & Shintani, Mototsugu, 2006. "Bootstrapping GMM estimators for time series," Journal of Econometrics, Elsevier, vol. 133(2), pages 531-555, August.
    14. Kiefer, Nicholas M. & Vogelsang, Timothy J., 2002. "Heteroskedasticity-Autocorrelation Robust Testing Using Bandwidth Equal To Sample Size," Econometric Theory, Cambridge University Press, vol. 18(6), pages 1350-1366, December.
    15. Hall, Peter & Horowitz, Joel L, 1996. "Bootstrap Critical Values for Tests Based on Generalized-Method-of-Moments Estimators," Econometrica, Econometric Society, vol. 64(4), pages 891-916, July.
    16. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    17. repec:cup:cbooks:9780521822893 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Politis, D N, 2009. "Higher-Order Accurate, Positive Semi-definite Estimation of Large-Sample Covariance and Spectral Density Matrices," University of California at San Diego, Economics Working Paper Series qt66w826hz, Department of Economics, UC San Diego.
    2. Kim, Min Seong & Sun, Yixiao, 2011. "Spatial heteroskedasticity and autocorrelation consistent estimation of covariance matrix," Journal of Econometrics, Elsevier, vol. 160(2), pages 349-371, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Federico Belotti & Alessandro Casini & Leopoldo Catania & Stefano Grassi & Pierre Perron, 2021. "Simultaneous Bandwidths Determination for DK-HAC Estimators and Long-Run Variance Estimation in Nonparametric Settings," Papers 2103.00060, arXiv.org.
    2. Preinerstorfer, David, 2014. "Finite Sample Properties of Tests Based on Prewhitened Nonparametric Covariance Estimators," MPRA Paper 58333, University Library of Munich, Germany.
    3. Sun, Yixiao X & Phillips, Peter C. B. & Jin, Sainan, 2005. "Optimal Bandwidth Selection in Heteroskedasticity-Autocorrelation Robust Testing∗," University of California at San Diego, Economics Working Paper Series qt16b3j2hd, Department of Economics, UC San Diego.
    4. Pötscher, Benedikt M. & Preinerstorfer, David, 2017. "Further Results on Size and Power of Heteroskedasticity and Autocorrelation Robust Tests, with an Application to Trend Testing," MPRA Paper 81053, University Library of Munich, Germany.
    5. Peter C.B. Phillips & Yixiao Sun & Sainan Jin, 2005. "Improved HAR Inference," Cowles Foundation Discussion Papers 1513, Cowles Foundation for Research in Economics, Yale University.
    6. Politis, D N, 2009. "Higher-Order Accurate, Positive Semi-definite Estimation of Large-Sample Covariance and Spectral Density Matrices," University of California at San Diego, Economics Working Paper Series qt66w826hz, Department of Economics, UC San Diego.
    7. Pötscher, Benedikt M. & Preinerstorfer, David, 2018. "Controlling the size of autocorrelation robust tests," Journal of Econometrics, Elsevier, vol. 207(2), pages 406-431.
    8. Preinerstorfer, David & Pötscher, Benedikt M., 2016. "On Size And Power Of Heteroskedasticity And Autocorrelation Robust Tests," Econometric Theory, Cambridge University Press, vol. 32(2), pages 261-358, April.
    9. Paulo M.D.C. Parente & Richard J. Smith, 2018. "Generalised Empirical Likelihood Kernel Block Bootstrapping," Working Papers REM 2018/55, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    10. Sun, Yixiao & Kim, Min Seong, 2012. "Simple and powerful GMM over-identification tests with accurate size," Journal of Econometrics, Elsevier, vol. 166(2), pages 267-281.
    11. Inoue, Atsushi & Shintani, Mototsugu, 2006. "Bootstrapping GMM estimators for time series," Journal of Econometrics, Elsevier, vol. 133(2), pages 531-555, August.
    12. Muller, Ulrich K., 2007. "A theory of robust long-run variance estimation," Journal of Econometrics, Elsevier, vol. 141(2), pages 1331-1352, December.
    13. Härdle, Wolfgang & Horowitz, Joel L. & Kreiss, Jens-Peter, 2001. "Bootstrap methods for time series," SFB 373 Discussion Papers 2001,59, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    14. Christian A. Vossler, 2013. "Analyzing repeated-game economics experiments: robust standard errors for panel data with serial correlation," Chapters, in: John A. List & Michael K. Price (ed.), Handbook on Experimental Economics and the Environment, chapter 3, pages 89-112, Edward Elgar Publishing.
    15. Kim, Min Seong & Sun, Yixiao & Yang, Jingjing, 2017. "A fixed-bandwidth view of the pre-asymptotic inference for kernel smoothing with time series data," Journal of Econometrics, Elsevier, vol. 197(2), pages 298-322.
    16. Allen, Jason & Gregory, Allan W. & Shimotsu, Katsumi, 2011. "Empirical likelihood block bootstrapping," Journal of Econometrics, Elsevier, vol. 161(2), pages 110-121, April.
    17. Issler, João Victor & Soares, Ana Flávia, 2019. "Central Bank credibility and inflation expectations: a microfounded forecasting approach," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 812, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    18. Lee, Wei-Ming & Kuan, Chung-Ming & Hsu, Yu-Chin, 2014. "Testing over-identifying restrictions without consistent estimation of the asymptotic covariance matrix," Journal of Econometrics, Elsevier, vol. 181(2), pages 181-193.
    19. Hartigan, Luke, 2018. "Alternative HAC covariance matrix estimators with improved finite sample properties," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 55-73.
    20. Lu, Ye & Park, Joon Y., 2019. "Estimation of longrun variance of continuous time stochastic process using discrete sample," Journal of Econometrics, Elsevier, vol. 210(2), pages 236-267.

    More about this item

    Keywords

    Asymptotic expansion; Bias; Confidence interval; Coverage probability; Edgeworth expansion; Lag kernel; Long run variance; Optimal bandwidth; Spectrum;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1661. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Matthew Regan). General contact details of provider: https://edirc.repec.org/data/cowleus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.