IDEAS home Printed from https://ideas.repec.org/p/cdl/ucsdec/qt16b3j2hd.html
   My bibliography  Save this paper

Optimal Bandwidth Selection in Heteroskedasticity-Autocorrelation Robust Testing∗

Author

Listed:
  • Sun, Yixiao X
  • Phillips, Peter C. B.
  • Jin, Sainan

Abstract

In time series regressions with nonparametrically autocorrelated errors, it is now standard empirical practice to use kernel-based robust standard errors that involve some smoothing function over the sample autocorrelations. The underlying smoothing parameter b, which can be defined as the ratio of the bandwidth (or truncation lag) to the sample size, is a tuning parameter that plays a key role in determining the asymptotic properties of the standard errors and associated semiparametric tests. Small-b asymptotics involve standard limit theory such as standard normal or chi-squared limits, whereas fixed-b asymptotics typically lead to nonstandard limit distributions involving Brownian bridge functionals. The present paper shows that the nonstandard fixed-b limit distributions of such nonparametrically studentized tests provide more accurate approximations to the finite sample distributions than the standard small-b limit distribution. In particular, using asymptotic expansions of both the finite sample distribution and the nonstandard limit distribution, we confirm that the second-order corrected critical value based on the expansion of the nonstandard limiting distribution is also second-order correct under the standard small-b asymptotics. We further show that, for typical economic time series, the optimal bandwidth that minimizes a weighted average of type I and type II errors is larger by an order of magnitude than the bandwidth that minimizes the asymptotic mean squared error of the corresponding long-run variance estimator. A plug-in procedure for implementing this optimal bandwidth is suggested and simulations confirm that the new plug-in procedure works well in finite samples.

Suggested Citation

  • Sun, Yixiao X & Phillips, Peter C. B. & Jin, Sainan, 2005. "Optimal Bandwidth Selection in Heteroskedasticity-Autocorrelation Robust Testing∗," University of California at San Diego, Economics Working Paper Series qt16b3j2hd, Department of Economics, UC San Diego.
  • Handle: RePEc:cdl:ucsdec:qt16b3j2hd
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/16b3j2hd.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kiefer, Nicholas M. & Vogelsang, Timothy J., 2005. "A New Asymptotic Theory For Heteroskedasticity-Autocorrelation Robust Tests," Econometric Theory, Cambridge University Press, vol. 21(6), pages 1130-1164, December.
    2. Taniguchi, Masanobu & Puri, Madan L., 1996. "Valid Edgeworth Expansions of M-Estimators in Regression Models with Weakly Dependent Resfduals," Econometric Theory, Cambridge University Press, vol. 12(2), pages 331-346, June.
    3. P. C. B. Phillips, 1980. "Finite Sample Theory and the Distributions of Alternative Estimators of the Marginal Propensity to Consume," Review of Economic Studies, Oxford University Press, vol. 47(1), pages 183-224.
    4. Gourieroux,Christian & Monfort,Alain, 1995. "Statistics and Econometric Models," Cambridge Books, Cambridge University Press, number 9780521471626.
    5. Velasco, Carlos & Robinson, Peter M., 2001. "Edgeworth Expansions For Spectral Density Estimates And Studentized Sample Mean," Econometric Theory, Cambridge University Press, vol. 17(3), pages 497-539, June.
    6. Nicholas M. Kiefer & Timothy J. Vogelsang & Helle Bunzel, 2000. "Simple Robust Testing of Regression Hypotheses," Econometrica, Econometric Society, vol. 68(3), pages 695-714, May.
    7. Kiefer, Nicholas M. & Vogelsang, Timothy J., 2002. "Heteroskedasticity-Autocorrelation Robust Testing Using Bandwidth Equal To Sample Size," Econometric Theory, Cambridge University Press, vol. 18(6), pages 1350-1366, December.
    8. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    9. Andrews, Donald W K & Monahan, J Christopher, 1992. "An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator," Econometrica, Econometric Society, vol. 60(4), pages 953-966, July.
    10. Michael Jansson, 2004. "The Error in Rejection Probability of Simple Autocorrelation Robust Tests," Econometrica, Econometric Society, vol. 72(3), pages 937-946, May.
    11. Jansson, Michael, 2002. "Consistent Covariance Matrix Estimation For Linear Processes," Econometric Theory, Cambridge University Press, vol. 18(6), pages 1449-1459, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nigar Hashimzade & Timothy J. Vogelsang, 2008. "Fixed‐b asymptotic approximation of the sampling behaviour of nonparametric spectral density estimators," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(1), pages 142-162, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter C.B. Phillips & Yixiao Sun & Sainan Jin, 2005. "Improved HAR Inference," Cowles Foundation Discussion Papers 1513, Cowles Foundation for Research in Economics, Yale University.
    2. Preinerstorfer, David, 2014. "Finite Sample Properties of Tests Based on Prewhitened Nonparametric Covariance Estimators," MPRA Paper 58333, University Library of Munich, Germany.
    3. Preinerstorfer, David & Pötscher, Benedikt M., 2016. "On Size And Power Of Heteroskedasticity And Autocorrelation Robust Tests," Econometric Theory, Cambridge University Press, vol. 32(2), pages 261-358, April.
    4. Yixiao Sun & Peter C.B. Phillips, 2008. "Optimal Bandwidth Choice for Interval Estimation in GMM Regression," Cowles Foundation Discussion Papers 1661, Cowles Foundation for Research in Economics, Yale University.
    5. Federico Belotti & Alessandro Casini & Leopoldo Catania & Stefano Grassi & Pierre Perron, 2021. "Simultaneous Bandwidths Determination for DK-HAC Estimators and Long-Run Variance Estimation in Nonparametric Settings," Papers 2103.00060, arXiv.org.
    6. Muller, Ulrich K., 2007. "A theory of robust long-run variance estimation," Journal of Econometrics, Elsevier, vol. 141(2), pages 1331-1352, December.
    7. Xu, Ke-Li, 2012. "Robustifying multivariate trend tests to nonstationary volatility," Journal of Econometrics, Elsevier, vol. 169(2), pages 147-154.
    8. Xiaofeng Shao, 2010. "A self‐normalized approach to confidence interval construction in time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 343-366, June.
    9. Pötscher, Benedikt M. & Preinerstorfer, David, 2017. "Further Results on Size and Power of Heteroskedasticity and Autocorrelation Robust Tests, with an Application to Trend Testing," MPRA Paper 81053, University Library of Munich, Germany.
    10. Kim, Min Seong & Sun, Yixiao & Yang, Jingjing, 2017. "A fixed-bandwidth view of the pre-asymptotic inference for kernel smoothing with time series data," Journal of Econometrics, Elsevier, vol. 197(2), pages 298-322.
    11. Sun, Yixiao, 2014. "Let’s fix it: Fixed-b asymptotics versus small-b asymptotics in heteroskedasticity and autocorrelation robust inference," Journal of Econometrics, Elsevier, vol. 178(P3), pages 659-677.
    12. Kim, Min Seong & Sun, Yixiao, 2013. "Heteroskedasticity and spatiotemporal dependence robust inference for linear panel models with fixed effects," Journal of Econometrics, Elsevier, vol. 177(1), pages 85-108.
    13. Surajit Ray & N. E. Savin, 2008. "The performance of heteroskedasticity and autocorrelation robust tests: a Monte Carlo study with an application to the three-factor Fama-French asset-pricing model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(1), pages 91-109.
    14. Pötscher, Benedikt M. & Preinerstorfer, David, 2018. "Controlling the size of autocorrelation robust tests," Journal of Econometrics, Elsevier, vol. 207(2), pages 406-431.
    15. Sun, Yixiao & Phillips, Peter C.B. & Jin, Sainan, 2011. "Power Maximization And Size Control In Heteroskedasticity And Autocorrelation Robust Tests With Exponentiated Kernels," Econometric Theory, Cambridge University Press, vol. 27(6), pages 1320-1368, December.
    16. Cheol-Keun Cho & Timothy J. Vogelsang, 2016. "Fixed- b Inference for Testing Structural Change in a Time Series Regression," Econometrics, MDPI, Open Access Journal, vol. 5(1), pages 1-26, December.
    17. Sun, Yixiao & Kim, Min Seong, 2012. "Simple and powerful GMM over-identification tests with accurate size," Journal of Econometrics, Elsevier, vol. 166(2), pages 267-281.
    18. M. Mogliani & T. Ferrière, 2016. "Rationality of announcements, business cycle asymmetry, and predictability of revisions. The case of French GDP," Working papers 600, Banque de France.
    19. Guggenberger, Patrik & Smith, Richard J., 2008. "Generalized empirical likelihood tests in time series models with potential identification failure," Journal of Econometrics, Elsevier, vol. 142(1), pages 134-161, January.
    20. Ray, Surajit & Savin, N.E. & Tiwari, Ashish, 2009. "Testing the CAPM revisited," Journal of Empirical Finance, Elsevier, vol. 16(5), pages 721-733, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:ucsdec:qt16b3j2hd. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Lisa Schiff). General contact details of provider: https://edirc.repec.org/data/deucsus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.