IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/315.html

Edgeworth expansions for spectral density estimates and studentized sample mean

Author

Listed:
  • Velasco, Carlos
  • Robinson, Peter M.

Abstract

We establish valid Edgeworth expansions for the distribution of smoothed nonparametric spectral estimates, and of studentized versions of linear statistics such as the sample mean, where the studentization employs such a nonparametric spectral estimate. Particular attention is paid to the spectral estimate at zero frequency and, correspondingly, the studentized sample mean, to reflect econometric interest in autocorrelation-consistent or long-run variance estimation. Our main focus is on stationary Gaussian series, though we discuss relaxation of the Gaussianity assumption. Only smoothness conditions on the spectral density that are local to the frequency of interest are imposed. We deduce empirical expansions from our Edgeworth expansions designed to improve on the normal approximation in practice and also deduce a feasible rule of bandwidth choice.

Suggested Citation

  • Velasco, Carlos & Robinson, Peter M., 2001. "Edgeworth expansions for spectral density estimates and studentized sample mean," LSE Research Online Documents on Economics 315, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:315
    as

    Download full text from publisher

    File URL: https://researchonline.lse.ac.uk/id/eprint/315/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    JEL classification:

    • J1 - Labor and Demographic Economics - - Demographic Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.