IDEAS home Printed from https://ideas.repec.org/p/ecl/corcae/05-08.html
   My bibliography  Save this paper

A New Asymptotic Theory for Heteroskedasticity-Autocorrelation Robust Tests

Author

Listed:
  • Kiefer, Nicholas M.

    (Cornell U)

  • Vogelsang, Timothy J.

    (Cornell U)

Abstract

A new first order asymptotic theory for heteroskedasticity-autocorrelation (HAC) robust tests based on nonparametric covariance matrix estimators is developed. The bandwidth of the covariance matrix estimator is modeled as a fixed proportion of the sample size. This leads to a distribution theory for HAC robust tests that explicitly captures the choice of bandwidth and kernel. This contrasts with the traditional asymptotics (where the bandwidth increases slower than the sample size) where the asymptotic distributions of HAC robust tests do not depend on the bandwidth or kernel. Finite sample simulations show that the new approach is more accurate than the traditional asymptotics. The impact of bandwidth and kernel choice on size and power of t-tests is analyzed. Smaller bandwidths lead to tests with higher power but greater size distortions and large bandwidths lead to tests with lower power but less size distortions. Size distortions across bandwidths increase as the serial correlation in the data becomes stronger. A new data dependent bandwidth is proposed in light of these results. Within a group of popular kernels, it shown that the Bartlett kernel has approximately the highest power and the quadratic spectral (QS) kernel has the lowest power regardless of the bandwidth. However, the Bartlett kernel gives the most size distorted tests whereas the QS kernels give the least size distorted tests. Overall, the results clearly indicate that for bandwidth and kernel choice there is a trade-off between size distortions and power.

Suggested Citation

  • Kiefer, Nicholas M. & Vogelsang, Timothy J., 2005. "A New Asymptotic Theory for Heteroskedasticity-Autocorrelation Robust Tests," Working Papers 05-08, Cornell University, Center for Analytic Economics.
  • Handle: RePEc:ecl:corcae:05-08
    as

    Download full text from publisher

    File URL: https://cae.economics.cornell.edu/05-08.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Kiefer, Nicholas M. & Vogelsang, Timothy J., 2002. "Heteroskedasticity-Autocorrelation Robust Testing Using Bandwidth Equal To Sample Size," Econometric Theory, Cambridge University Press, vol. 18(6), pages 1350-1366, December.
    3. Whitney K. Newey & Kenneth D. West, 1994. "Automatic Lag Selection in Covariance Matrix Estimation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(4), pages 631-653.
    4. Hansen, Bruce E, 1992. "Consistent Covariance Matrix Estimation for Dependent Heterogeneous Processes," Econometrica, Econometric Society, vol. 60(4), pages 967-972, July.
    5. Matyas,Laszlo (ed.), 1999. "Generalized Method of Moments Estimation," Cambridge Books, Cambridge University Press, number 9780521669672, January.
    6. Wouter Denhaan & Andrew T. Levin, 1996. "VARHAC Covariance Matrix Estimator (GAUSS)," QM&RBC Codes 64, Quantitative Macroeconomics & Real Business Cycles.
    7. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    8. Andrews, Donald W K & Monahan, J Christopher, 1992. "An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator," Econometrica, Econometric Society, vol. 60(4), pages 953-966, July.
    9. repec:cdl:ucsdec:96-17 is not listed on IDEAS
    10. Whitney Newey & Kenneth West, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    11. P. M. Robinson, 1998. "Inference-Without-Smoothing in the Presence of Nonparametric Autocorrelation," Econometrica, Econometric Society, vol. 66(5), pages 1163-1182, September.
    12. Matyas,Laszlo (ed.), 1999. "Generalized Method of Moments Estimation," Cambridge Books, Cambridge University Press, number 9780521660136, January.
    13. P. C. B. Phillips & S. N. Durlauf, 1986. "Multiple Time Series Regression with Integrated Processes," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 53(4), pages 473-495.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wouter J. Den Haan & Andrew T. Levin, 1995. "Inferences from parametric and non-parametric covariance matrix estimation procedures," International Finance Discussion Papers 504, Board of Governors of the Federal Reserve System (U.S.).
    2. Hirukawa, Masayuki, 2023. "Robust Covariance Matrix Estimation in Time Series: A Review," Econometrics and Statistics, Elsevier, vol. 27(C), pages 36-61.
    3. Christian A. Vossler, 2013. "Analyzing repeated-game economics experiments: robust standard errors for panel data with serial correlation," Chapters, in: John A. List & Michael K. Price (ed.), Handbook on Experimental Economics and the Environment, chapter 3, pages 89-112, Edward Elgar Publishing.
    4. Issler, João Victor & Soares, Ana Flávia, 2023. "Central bank credibility and inflation expectations: a microfounded forecasting approach," Macroeconomic Dynamics, Cambridge University Press, vol. 27(5), pages 1268-1288, July.
    5. Peter C.B. Phillips & Yixiao Sun & Sainan Jin, 2005. "Improved HAR Inference," Cowles Foundation Discussion Papers 1513, Cowles Foundation for Research in Economics, Yale University.
    6. repec:cdl:ucsdec:qt66w826hz is not listed on IDEAS
    7. repec:cdl:ucsdec:qt7qg2m9rz is not listed on IDEAS
    8. Preinerstorfer, David & Pötscher, Benedikt M., 2016. "On Size And Power Of Heteroskedasticity And Autocorrelation Robust Tests," Econometric Theory, Cambridge University Press, vol. 32(2), pages 261-358, April.
    9. Preinerstorfer, David, 2014. "Finite Sample Properties of Tests Based on Prewhitened Nonparametric Covariance Estimators," MPRA Paper 58333, University Library of Munich, Germany.
    10. Boudoukh, Jacob & Israel, Ronen & Richardson, Matthew, 2022. "Biases in long-horizon predictive regressions," Journal of Financial Economics, Elsevier, vol. 145(3), pages 937-969.
    11. Casini, Alessandro, 2023. "Theory of evolutionary spectra for heteroskedasticity and autocorrelation robust inference in possibly misspecified and nonstationary models," Journal of Econometrics, Elsevier, vol. 235(2), pages 372-392.
    12. Yongmiao Hong & Jin Lee, 2000. "Wavelet-based Estimation for Heteroskedasticity and Autocorrelation Consistent Variance-Covariance Matrices," Econometric Society World Congress 2000 Contributed Papers 1211, Econometric Society.
    13. Paulo M. D. C. Parente & Richard J. Smith, 2021. "Quasi‐maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 377-405, July.
    14. repec:cdl:ucsdec:qt16b3j2hd is not listed on IDEAS
    15. Härdle, Wolfgang & Horowitz, Joel L. & Kreiss, Jens-Peter, 2001. "Bootstrap methods for time series," SFB 373 Discussion Papers 2001,59, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    16. Federico Belotti & Alessandro Casini & Leopoldo Catania & Stefano Grassi & Pierre Perron, 2023. "Simultaneous bandwidths determination for DK-HAC estimators and long-run variance estimation in nonparametric settings," Econometric Reviews, Taylor & Francis Journals, vol. 42(3), pages 281-306, February.
    17. Helene Hamisultane, 2010. "Utility-based pricing of weather derivatives," The European Journal of Finance, Taylor & Francis Journals, vol. 16(6), pages 503-525.
    18. Matei Demetrescu & Christoph Hanck & Robinson Kruse, 2016. "Fixed-b Inference in the Presence of Time-Varying Volatility," CREATES Research Papers 2016-01, Department of Economics and Business Economics, Aarhus University.
    19. Clark, Todd & McCracken, Michael, 2013. "Advances in Forecast Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1107-1201, Elsevier.
    20. Robert Amano & Tony S. Wirjanto, "undated". "A Further Analysis of Exchange Rate Targeting in Canada," Staff Working Papers 94-2, Bank of Canada.
    21. Ekaterini Panopoulou & Nikitas Pittis & Sarantis Kalyvitis, 2010. "Looking far in the past: revisiting the growth-returns nexus with non-parametric tests," Empirical Economics, Springer, vol. 38(3), pages 743-766, June.
    22. Kuan, Chung-Ming & Hsieh, Yu-Wei, 2008. "Improved HAC covariance matrix estimation based on forecast errors," Economics Letters, Elsevier, vol. 99(1), pages 89-92, April.
    23. Surajit Ray & N. E. Savin, 2008. "The performance of heteroskedasticity and autocorrelation robust tests: a Monte Carlo study with an application to the three-factor Fama-French asset-pricing model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(1), pages 91-109.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecl:corcae:05-08. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/cacorus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.