IDEAS home Printed from https://ideas.repec.org/p/nbr/nberte/0195.html
   My bibliography  Save this paper

Inferences from Parametric and Non-Parametric Covariance Matrix Estimation Procedures

Author

Listed:
  • Wouter J. Den Haan
  • Andrew Levin

Abstract

In this paper, we propose a parametric spectral estimation procedure for constructing heteroskedasticity and autocorrelation consistent (HAC) covariance matrices. We establish the consistency of this procedure under very general conditions similar to those considered in previous research, and we demonstrate that the parametric estimator converges at a faster rate than the kernel-based estimators proposed by Andrews and Monahan (1992) and Newey and West (1994). In finite samples, our Monte Carlo experiments indicate that the parametric estimator matches, and in some cases greatly exceeds, the performance of the prewhitened kernel estimator proposed by Andrews and Monahan (1992). These simulation experiments illustrate several important limitations of non-parametric HAC estimation procedures, and highlight the advantages of explicitly modeling the temporal properties of the error terms. Wouter J. den Haan Andrew Levin Depa

Suggested Citation

  • Wouter J. Den Haan & Andrew Levin, 1996. "Inferences from Parametric and Non-Parametric Covariance Matrix Estimation Procedures," NBER Technical Working Papers 0195, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberte:0195 Note: EFG
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/t0195.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Chistiano, Lawrence J & den Haan, Wouter J, 1996. "Small-Sample Properties of GMM for Business-Cycle Analysis," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 309-327, July.
    2. Vogelsang, Timothy J & Perron, Pierre, 1998. "Additional Tests for a Unit Root Allowing for a Break in the Trend Function at an Unknown Time," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 1073-1100, November.
    3. Craig Burnside & Martin Eichenbaum, 1994. "Small sample properties of generalized method of moments based Wald tests," Working Paper Series, Macroeconomic Issues 94-12, Federal Reserve Bank of Chicago.
    4. Pierre Perron & Serena Ng, 1996. "Useful Modifications to some Unit Root Tests with Dependent Errors and their Local Asymptotic Properties," Review of Economic Studies, Oxford University Press, pages 435-463.
    5. Robinson, P M, 1991. "Automatic Frequency Domain Inference on Semiparametric and Nonparametric Models," Econometrica, Econometric Society, vol. 59(5), pages 1329-1363, September.
    6. Whitney K. Newey & Kenneth D. West, 1994. "Automatic Lag Selection in Covariance Matrix Estimation," Review of Economic Studies, Oxford University Press, vol. 61(4), pages 631-653.
    7. Andrews, Donald W K & Chen, Hong-Yuan, 1994. "Approximately Median-Unbiased Estimation of Autoregressive Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(2), pages 187-204, April.
    8. Hansen, Bruce E, 1992. "Consistent Covariance Matrix Estimation for Dependent Heterogeneous Processes," Econometrica, Econometric Society, vol. 60(4), pages 967-972, July.
    9. Ng, S. & Perron, P., 1994. "Unit Root Tests ARMA Models with Data Dependent Methods for the Selection of the Truncation Lag," Cahiers de recherche 9423, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    10. Hansen, Lars Peter & Sargent, Thomas J., 1980. "Formulating and estimating dynamic linear rational expectations models," Journal of Economic Dynamics and Control, Elsevier, vol. 2(1), pages 7-46, May.
    11. Fama, Eugene F & French, Kenneth R, 1988. "Permanent and Temporary Components of Stock Prices," Journal of Political Economy, University of Chicago Press, vol. 96(2), pages 246-273, April.
    12. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, pages 817-858.
    13. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Publishing House "SINERGIA PRESS", pages 125-132.
    14. Andrews, Donald W K & Monahan, J Christopher, 1992. "An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator," Econometrica, Econometric Society, pages 953-966.
    15. Stock, James H & Watson, Mark W, 1993. "A Simple Estimator of Cointegrating Vectors in Higher Order Integrated Systems," Econometrica, Econometric Society, vol. 61(4), pages 783-820, July.
    16. West, Kenneth D., 1997. "Another heteroskedasticity- and autocorrelation-consistent covariance matrix estimator," Journal of Econometrics, Elsevier, pages 171-191.
    17. Athreya, Krishna B. & Pantula, Sastry G., 1986. "A note on strong mixing of ARMA processes," Statistics & Probability Letters, Elsevier, pages 187-190.
    18. repec:wop:calsdi:96-17 is not listed on IDEAS
    19. Wouter J. Den Haan & Andrew T. Levin, 1996. "A Practitioner's Guide to Robust Covariance Matrix Estimation," NBER Technical Working Papers 0197, National Bureau of Economic Research, Inc.
    20. P. M. Robinson, 1998. "Inference-Without-Smoothing in the Presence of Nonparametric Autocorrelation," Econometrica, Econometric Society, vol. 66(5), pages 1163-1182, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. João Valle e Azevedo & Ana Pereira, 2008. "Approximating and Forecasting Macroeconomic Signals in Real-Time," Working Papers w200819, Banco de Portugal, Economics and Research Department.
    2. Christiano, Lawrence J & Eichenbaum, Martin & Marshall, David, 1991. "The Permanent Income Hypothesis Revisited," Econometrica, Econometric Society, pages 397-423.
    3. Ionel Birgean & Lutz Kilian, 2002. "Data-Driven Nonparametric Spectral Density Estimators For Economic Time Series: A Monte Carlo Study," Econometric Reviews, Taylor & Francis Journals, pages 449-476.
    4. Shigeru Fujita, 2004. "Vacancy persistence," Working Papers 04-23, Federal Reserve Bank of Philadelphia.
    5. Giacomini, Raffaella & Komunjer, Ivana, 2005. "Evaluation and Combination of Conditional Quantile Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 416-431, October.
    6. Qunyong Wang & Na Wu, 2012. "Long-run covariance and its applications in cointegration regression," Stata Journal, StataCorp LP, vol. 12(3), pages 525-542, September.
    7. Bollen, Bernard & Inder, Brett, 2002. "Estimating daily volatility in financial markets utilizing intraday data," Journal of Empirical Finance, Elsevier, pages 551-562.
    8. Brüggemann, Ralf & Jentsch, Carsten & Trenkler, Carsten, 2016. "Inference in VARs with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, pages 69-85.
    9. Hidehiko Ichimura & Christopher Taber, 2000. "Direct estimation of policy impacts," IFS Working Papers W00/05, Institute for Fiscal Studies.
    10. Chistiano, Lawrence J & den Haan, Wouter J, 1996. "Small-Sample Properties of GMM for Business-Cycle Analysis," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 309-327, July.
    11. Kenneth West & Ka-fu Wong & Stanislav Anatolyev, 2009. "Instrumental Variables Estimation of Heteroskedastic Linear Models Using All Lags of Instruments," Econometric Reviews, Taylor & Francis Journals, pages 441-467.
    12. Bollen, Bernard & Inder, Brett, 2002. "Estimating daily volatility in financial markets utilizing intraday data," Journal of Empirical Finance, Elsevier, pages 551-562.
    13. Wagenvoort, Rien & Waldmann, Robert, 2002. "On B-robust instrumental variable estimation of the linear model with panel data," Journal of Econometrics, Elsevier, pages 297-324.
    14. Petko Kalev & Brett Inder, 2006. "The information content of the term structure of interest rates," Applied Economics, Taylor & Francis Journals, vol. 38(1), pages 33-45.
    15. Kuo, Biing-Shen, 1998. "Test for partial parameter instability in regressions with I(1) processes," Journal of Econometrics, Elsevier, pages 337-368.
    16. Wouter J. den Haan & Andrew T. Levin, 2000. "Robust Covariance Matrix Estimation with Data-Dependent VAR Prewhitening Order," NBER Technical Working Papers 0255, National Bureau of Economic Research, Inc.
    17. Shakila Aruman & Mardi Dungey, 2001. "A Perspective on Modelling the Real Trade Weighted Index Since the Float," CEPR Discussion Papers 435, Centre for Economic Policy Research, Research School of Economics, Australian National University.
    18. Wouter J. Den Haan & Andrew T. Levin, 1996. "A Practitioner's Guide to Robust Covariance Matrix Estimation," NBER Technical Working Papers 0197, National Bureau of Economic Research, Inc.
    19. repec:cdl:ucsdec:96-17 is not listed on IDEAS
    20. Ionel Birgean & Lutz Kilian, 2002. "Data-Driven Nonparametric Spectral Density Estimators For Economic Time Series: A Monte Carlo Study," Econometric Reviews, Taylor & Francis Journals, pages 449-476.
    21. repec:wop:calsdi:96-17 is not listed on IDEAS
    22. Bansal, Ravi & Lundblad, Christian, 2002. "Market efficiency, asset returns, and the size of the risk premium in global equity markets," Journal of Econometrics, Elsevier, pages 195-237.
    23. Valle e Azevedo, João & Pereira, Ana, 2013. "Approximating and forecasting macroeconomic signals in real-time," International Journal of Forecasting, Elsevier, vol. 29(3), pages 479-492.

    More about this item

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberte:0195. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/nberrus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.