IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v112y2012icp145-155.html
   My bibliography  Save this article

On variance estimation in a negative binomial time series regression model

Author

Listed:
  • Wu, Rongning

Abstract

We study variance estimation in a negative binomial regression model for analyzing time series of counts, where serial dependence among the observed counts is introduced by an autocorrelated latent process. The regression coefficient vector is estimated by maximizing the pseudo-likelihood with the latent process suppressed. The resulting estimator is referred to as the generalized linear model estimator, and its consistency and asymptotic normality have been established by Davis and Wu [R.A. Davis, R. Wu, A negative binomial model for time series of counts, Biometrika 96 (2009) 735–749] when the latent process is stationary and strongly mixing. However, in order to perform valid statistical inferences about the regression coefficients, it is essential to develop a consistent estimation procedure for the asymptotic covariance matrix of the generalized linear model estimator. We propose two types of estimators using kernel-based and subsampling methods, and establish their consistency property. The results can be generalized straightforwardly to time series following a parameter-driven generalized linear model. Simulation study is conducted to evaluate the finite sample performance of the estimation methods.

Suggested Citation

  • Wu, Rongning, 2012. "On variance estimation in a negative binomial time series regression model," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 145-155.
  • Handle: RePEc:eee:jmvana:v:112:y:2012:i:c:p:145-155
    DOI: 10.1016/j.jmva.2012.06.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X12001522
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2012.06.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Durbin & S. J. Koopman, 2000. "Time series analysis of non‐Gaussian observations based on state space models from both classical and Bayesian perspectives," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(1), pages 3-56.
    2. Whitney K. Newey & Kenneth D. West, 1994. "Automatic Lag Selection in Covariance Matrix Estimation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(4), pages 631-653.
    3. Harvey, Andrew C & Fernandes, C, 1989. "Time Series Models for Count or Qualitative Observations," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(4), pages 407-417, October.
    4. Hansen, Bruce E, 1992. "Consistent Covariance Matrix Estimation for Dependent Heterogeneous Processes," Econometrica, Econometric Society, vol. 60(4), pages 967-972, July.
    5. T. Lumley & P. Heagerty, 1999. "Weighted empirical adaptive variance estimators for correlated data regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(2), pages 459-477, April.
    6. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    7. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    8. Andrews, Donald W K & Monahan, J Christopher, 1992. "An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator," Econometrica, Econometric Society, vol. 60(4), pages 953-966, July.
    9. West, Kenneth D., 1997. "Another heteroskedasticity- and autocorrelation-consistent covariance matrix estimator," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 171-191.
    10. Wu, Rongning & Cao, Jiguo, 2011. "Blockwise empirical likelihood for time series of counts," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 661-673, March.
    11. Harvey, Andrew C & Fernandes, C, 1989. "Time Series Models for Count or Qualitative Observations: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(4), pages 422-422, October.
    12. Richard A. Davis & Rongning Wu, 2009. "A negative binomial model for time series of counts," Biometrika, Biometrika Trust, vol. 96(3), pages 735-749.
    13. M. J. Campbell, 1994. "Time Series Regression for Counts: An Investigation into the Relationship between Sudden Infant Death Syndrome and Environmental Temperature," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 157(2), pages 191-208, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. William Dunsmuir & Jieyi He, 2017. "Marginal Estimation of Parameter Driven Binomial Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(1), pages 120-144, January.
    2. Rongning Wu & Yunwei Cui, 2014. "A Parameter-Driven Logit Regression Model For Binary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(5), pages 462-477, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wouter J. Den Haan & Andrew T. Levin, 1995. "Inferences from parametric and non-parametric covariance matrix estimation procedures," International Finance Discussion Papers 504, Board of Governors of the Federal Reserve System (U.S.).
    2. Hirukawa, Masayuki, 2023. "Robust Covariance Matrix Estimation in Time Series: A Review," Econometrics and Statistics, Elsevier, vol. 27(C), pages 36-61.
    3. Politis, D N, 2009. "Higher-Order Accurate, Positive Semi-definite Estimation of Large-Sample Covariance and Spectral Density Matrices," University of California at San Diego, Economics Working Paper Series qt66w826hz, Department of Economics, UC San Diego.
    4. Hartigan, Luke, 2018. "Alternative HAC covariance matrix estimators with improved finite sample properties," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 55-73.
    5. Michael Jansson & Marcelo J. Moreira, 2006. "Optimal Inference in Regression Models with Nearly Integrated Regressors," Econometrica, Econometric Society, vol. 74(3), pages 681-714, May.
    6. Wouter J. den Haan & Andrew T. Levin, 2000. "Robust Covariance Matrix Estimation with Data-Dependent VAR Prewhitening Order," NBER Technical Working Papers 0255, National Bureau of Economic Research, Inc.
    7. repec:jss:jstsof:11:i10 is not listed on IDEAS
    8. Clark, Todd & McCracken, Michael, 2013. "Advances in Forecast Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1107-1201, Elsevier.
    9. Ekaterini Panopoulou & Nikitas Pittis & Sarantis Kalyvitis, 2010. "Looking far in the past: revisiting the growth-returns nexus with non-parametric tests," Empirical Economics, Springer, vol. 38(3), pages 743-766, June.
    10. Issler, João Victor & Soares, Ana Flávia, 2019. "Central Bank credibility and inflation expectations: a microfounded forecasting approach," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 812, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    11. Kuan, Chung-Ming & Hsieh, Yu-Wei, 2008. "Improved HAC covariance matrix estimation based on forecast errors," Economics Letters, Elsevier, vol. 99(1), pages 89-92, April.
    12. Ding, Peng, 2021. "The Frisch–Waugh–Lovell theorem for standard errors," Statistics & Probability Letters, Elsevier, vol. 168(C).
    13. Kiefer, Nicholas M. & Vogelsang, Timothy J., 2005. "A New Asymptotic Theory For Heteroskedasticity-Autocorrelation Robust Tests," Econometric Theory, Cambridge University Press, vol. 21(6), pages 1130-1164, December.
    14. Politis, Dimitris, 2005. "Higher-order accurate, positive semi-definite estimation of large-sample covariance and spectral density matrices," University of California at San Diego, Economics Working Paper Series qt7qg2m9rz, Department of Economics, UC San Diego.
    15. Preinerstorfer, David & Pötscher, Benedikt M., 2016. "On Size And Power Of Heteroskedasticity And Autocorrelation Robust Tests," Econometric Theory, Cambridge University Press, vol. 32(2), pages 261-358, April.
    16. Casini, Alessandro & Perron, Pierre, 2024. "Prewhitened long-run variance estimation robust to nonstationarity," Journal of Econometrics, Elsevier, vol. 242(1).
    17. Lu, Ye & Park, Joon Y., 2019. "Estimation of longrun variance of continuous time stochastic process using discrete sample," Journal of Econometrics, Elsevier, vol. 210(2), pages 236-267.
    18. Sophocles Mavroeidis, 2006. "Testing the New Keynesian Phillips Curve Without Assuming Identification," Working Papers 2006-13, Brown University, Department of Economics.
    19. Kenneth D. West, 1993. "Inventory Models," NBER Technical Working Papers 0143, National Bureau of Economic Research, Inc.
    20. Giacomini, Raffaella & Komunjer, Ivana, 2005. "Evaluation and Combination of Conditional Quantile Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 416-431, October.
    21. Yongmiao Hong & Jin Lee, 2000. "Wavelet-based Estimation for Heteroskedasticity and Autocorrelation Consistent Variance-Covariance Matrices," Econometric Society World Congress 2000 Contributed Papers 1211, Econometric Society.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:112:y:2012:i:c:p:145-155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.