IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

On Size and Power of Heteroscedasticity and Autocorrelation Robust Tests

  • Preinerstorfer, David
  • Pötscher, Benedikt M.

Testing restrictions on regression coefficients in linear models often requires correcting the conventional F-test for potential heteroscedasticity or autocorrelation amongst the disturbances, leading to so-called heteroskedasticity and autocorrelation robust test procedures. These procedures have been developed with the purpose of attenuating size distortions and power deficiencies present for the uncorrected F-test. We develop a general theory to establish positive as well as negative finite-sample results concerning the size and power properties of a large class of heteroskedasticity and autocorrelation robust tests. Using these results we show that nonparametrically as well as parametrically corrected F-type tests in time series regression models with stationary disturbances have either size equal to one or nuisance-infimal power equal to zero under very weak assumptions on the covariance model and under generic conditions on the design matrix. In addition we suggest an adjustment procedure based on artificial regressors. This adjustment resolves the problem in many cases in that the so-adjusted tests do not suffer from size distortions. At the same time their power function is bounded away from zero. As a second application we discuss the case of heteroscedastic disturbances.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: https://mpra.ub.uni-muenchen.de/45675/1/MPRA_paper_45675.pdf
File Function: original version
Download Restriction: no

File URL: https://mpra.ub.uni-muenchen.de/57184/1/MPRA_paper_57184.pdf
File Function: revised version
Download Restriction: no

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 45675.

as
in new window

Length:
Date of creation: Jan 2013
Date of revision:
Handle: RePEc:pra:mprapa:45675
Contact details of provider: Postal:
Ludwigstraße 33, D-80539 Munich, Germany

Phone: +49-(0)89-2180-2459
Fax: +49-(0)89-2180-992459
Web page: https://mpra.ub.uni-muenchen.de

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Carlos Velasco & Peter M. Robinson, 2001. "Edgeworth expansions for spectral density estimates and studentized sample mean," LSE Research Online Documents on Economics 315, London School of Economics and Political Science, LSE Library.
  2. Keener, Robert W. & Kmenta, Jan & Weber, Neville C., 1991. "Estimation of the Covariance Matrix of the Least-Squares Regression Coefficients When the Disturbance Covariance Matrix Is of Unknown Form," Econometric Theory, Cambridge University Press, vol. 7(01), pages 22-45, March.
  3. Kiefer, Nicholas M. & Bunzel, Helle & Vogelsang, Timothy & Vogelsang, Timothy & Bunzel, Helle, 2000. "Simple Robust Testing of Regression Hypotheses," Staff General Research Papers Archive 1832, Iowa State University, Department of Economics.
  4. Nicholas M. Kiefer & Timothy J. Vogelsang, 2002. "Heteroskedasticity-Autocorrelation Robust Standard Errors Using The Bartlett Kernel Without Truncation," Econometrica, Econometric Society, vol. 70(5), pages 2093-2095, September.
  5. Kiefer, Nicholas M. & Vogelsang, Timothy J., 2002. "Heteroskedasticity-Autocorrelation Robust Testing Using Bandwidth Equal To Sample Size," Econometric Theory, Cambridge University Press, vol. 18(06), pages 1350-1366, December.
  6. Pierre Perron & Linxia Ren, 2010. "On the Irrelevance of Impossibility Theorems: The Case of the Long-run Variance," Boston University - Department of Economics - Working Papers Series WP2010-049, Boston University - Department of Economics.
  7. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-58, May.
  8. Phillips, Peter C.B., 2005. "Hac Estimation By Automated Regression," Econometric Theory, Cambridge University Press, vol. 21(01), pages 116-142, February.
  9. Kenneth D. West & Whitney K. Newey, 1995. "Automatic Lag Selection in Covariance Matrix Estimation," NBER Technical Working Papers 0144, National Bureau of Economic Research, Inc.
  10. Cribari-Neto, Francisco, 2004. "Asymptotic inference under heteroskedasticity of unknown form," Computational Statistics & Data Analysis, Elsevier, vol. 45(2), pages 215-233, March.
  11. Andrews, Donald W K & Monahan, J Christopher, 1992. "An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator," Econometrica, Econometric Society, vol. 60(4), pages 953-66, July.
  12. DUFOUR, Jean-Marie, 2003. "Identification, Weak Instruments and Statistical Inference in Econometrics," Cahiers de recherche 10-2003, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  13. Yixiao Sun & Peter C. B. Phillips & Sainan Jin, 2006. "Optimal Bandwidth Selection in Heteroskedasticity-Autocorrelation Robust Testing," Cowles Foundation Discussion Papers 1545, Cowles Foundation for Research in Economics, Yale University.
  14. Kelejian, Harry H. & Prucha, Ingmar R., 2007. "HAC estimation in a spatial framework," Journal of Econometrics, Elsevier, vol. 140(1), pages 131-154, September.
  15. Kramer, W., 1989. "On the robustness of the F-test to autocorrelation among disturbances," Economics Letters, Elsevier, vol. 30(1), pages 37-40.
  16. Kelejian, Harry H. & Prucha, Ingmar R., 2010. "Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances," Journal of Econometrics, Elsevier, vol. 157(1), pages 53-67, July.
  17. Politis, Dimitris N., 2011. "Higher-Order Accurate, Positive Semidefinite Estimation Of Large-Sample Covariance And Spectral Density Matrices," Econometric Theory, Cambridge University Press, vol. 27(04), pages 703-744, August.
  18. Benedikt M. Pötscher, 1999. "Lower Risk Bounds and Properties of Confidence Sets For Ill-Posed Estimation Problems with Applications to Spectral Density and Persistence Estimation, Unit Roots,and Estimation of Long Memory Paramet," Vienna Economics Papers 0202, University of Vienna, Department of Economics.
  19. Jean-Marie Dufour, 1997. "Some Impossibility Theorems in Econometrics with Applications to Structural and Dynamic Models," Econometrica, Econometric Society, vol. 65(6), pages 1365-1388, November.
  20. Michael Jansson, 2004. "The Error in Rejection Probability of Simple Autocorrelation Robust Tests," Econometrica, Econometric Society, vol. 72(3), pages 937-946, 05.
  21. Sun, Yixiao & Phillips, Peter C.B. & Jin, Sainan, 2011. "Power Maximization And Size Control In Heteroskedasticity And Autocorrelation Robust Tests With Exponentiated Kernels," Econometric Theory, Cambridge University Press, vol. 27(06), pages 1320-1368, December.
  22. Whitney K. Newey & Kenneth D. West, 1986. "A Simple, Positive Semi-Definite, Heteroskedasticity and AutocorrelationConsistent Covariance Matrix," NBER Technical Working Papers 0055, National Bureau of Economic Research, Inc.
  23. Jansson, Michael, 2002. "Consistent Covariance Matrix Estimation For Linear Processes," Econometric Theory, Cambridge University Press, vol. 18(06), pages 1449-1459, December.
  24. Magee, Lonnie, 1989. "An Edgeworth Test Size Correction for the Linear Model with AR(1) Errors," Econometrica, Econometric Society, vol. 57(3), pages 661-74, May.
  25. Park, Rolla Edward & Mitchell, Bridger M., 1980. "Estimating the autocorrelated error model with trended data," Journal of Econometrics, Elsevier, vol. 13(2), pages 185-201, June.
  26. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-38, May.
  27. Phillips, Peter C.B. & Sun, Yixiao & Jin, Sainan, 2004. "Spectral Density Estimation and Robust Hypothesis Testing Using Steep Origin Kernels Without Truncation," University of California at San Diego, Economics Working Paper Series qt6mf9q2rt, Department of Economics, UC San Diego.
  28. Martellosio, Federico, 2010. "Power Properties Of Invariant Tests For Spatial Autocorrelation In Linear Regression," Econometric Theory, Cambridge University Press, vol. 26(01), pages 152-186, February.
  29. Ibragimov, Rustam & Müller, Ulrich K., 2010. "t-Statistic Based Correlation and Heterogeneity Robust Inference," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(4), pages 453-468.
  30. Banerjee, Anurag N. & Magnus, Jan R., 2000. "On the sensitivity of the usual t- and F-tests to covariance misspecification," Journal of Econometrics, Elsevier, vol. 95(1), pages 157-176, March.
  31. Hansen, Bruce E, 1992. "Consistent Covariance Matrix Estimation for Dependent Heterogeneous Processes," Econometrica, Econometric Society, vol. 60(4), pages 967-72, July.
  32. Vogelsang, Timothy J., 2012. "Heteroskedasticity, autocorrelation, and spatial correlation robust inference in linear panel models with fixed-effects," Journal of Econometrics, Elsevier, vol. 166(2), pages 303-319.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:45675. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.