IDEAS home Printed from
   My bibliography  Save this paper

Estimation of the Covariance Matrix of the Least Squares regression Coefficients when the Disturbance Covariance Matrix is of Unknown Form


  • Keener, R.W.
  • Kmenta, J.
  • Weber, N.C.


This paper deals with the problem of estimating the covariance matrix of the least-squares regression coefficients under heteroskedasticity and/or autocorrelation of unknown form. We consider an estimator proposed by White [17] and give a relatively simple proof of its consistency. Our proof is based on more easily verifiable conditions than those of White. An alternative estimator with improved small sample properties is also presented.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Keener, R.W. & Kmenta, J. & Weber, N.C., 1990. "Estimation of the Covariance Matrix of the Least Squares regression Coefficients when the Disturbance Covariance Matrix is of Unknown Form," Papers 90-19, Michigan - Center for Research on Economic & Social Theory.
  • Handle: RePEc:fth:michet:90-19

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Preinerstorfer, David & Pötscher, Benedikt M., 2016. "On Size And Power Of Heteroskedasticity And Autocorrelation Robust Tests," Econometric Theory, Cambridge University Press, vol. 32(02), pages 261-358, April.
    2. Hartigan, Luke, 2018. "Alternative HAC covariance matrix estimators with improved finite sample properties," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 55-73.
    3. Yongmiao Hong & Jin Lee, 2000. "Wavelet-based Estimation for Heteroskedasticity and Autocorrelation Consistent Variance-Covariance Matrices," Econometric Society World Congress 2000 Contributed Papers 1211, Econometric Society.
    4. Kramer, Walter & Michels, Sonja, 1997. "Autocorrelation- and heteroskedasticity-consistent t-values with trending data," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 141-147.
    5. You, Jinhong & Zhou, Xian & Zhu, Li-Xing, 2009. "Inference on a regression model with noised variables and serially correlated errors," Journal of Multivariate Analysis, Elsevier, vol. 100(6), pages 1182-1197, July.
    6. Lloyd A. Mancl & Timothy A. DeRouen, 2001. "A Covariance Estimator for GEE with Improved Small‐Sample Properties," Biometrics, The International Biometric Society, vol. 57(1), pages 126-134, March.
    7. You, Jinhong & Zhou, Xian & Chen, Gemai, 2005. "Jackknifing in partially linear regression models with serially correlated errors," Journal of Multivariate Analysis, Elsevier, vol. 92(2), pages 386-404, February.

    More about this item


    econometrics ; regression analysis;


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fth:michet:90-19. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Thomas Krichel). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.