IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Identification, Weak Instruments and Statistical Inference in Econometrics

  • DUFOUR, Jean-Marie

We discuss statistical inference problems associated with identification and testability in econometrics, and we emphasize the common nature of the two issues. After reviewing the relevant statistical notions, we consider in turn inference in nonparametric models and recent developments on weakly identified models (or weak instruments). We point out that many hypotheses, for which test procedures are commonly proposed, are not testable at all, while some frequently used econometric methods are fundamentally inappropriate for the models considered. Such situations lead to ill-defined statistical problems and are often associated with a misguided use of asymptotic distributional results. Concerning nonparametric hypotheses, we discuss three basic problems for which such difficulties occur : (1) testing a mean (or a moment) under (too) weak distributional assumptions; (2) inference under heteroskedasticity of unknown form; (3) inference in dynamic models with an unlimited number of parameters. Concerning weakly identified models, we stress that valid inference should be based on proper pivotal functions —a condition not satisfied by standard Wald-type methods based on standard errors — and we discuss recent developments in this field, mainly from the viewpoint of building valid tests and confidence sets. The techniques discussed include alternative proposed statistics, bounds, projection, split-sampling, conditioning, Monte Carlo tests. The possibility of deriving a finite-sample distributional theory, robustness to the presence of weak instruments, and robustness to the specification of a model for endogenous explanatory variables are stressed as important criteria assessing alternative procedures.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.cireqmontreal.com/wp-content/uploads/cahiers/10-2003-cah.pdf
Download Restriction: no

Paper provided by Centre interuniversitaire de recherche en économie quantitative, CIREQ in its series Cahiers de recherche with number 10-2003.

as
in new window

Length: 39 pages
Date of creation: 2003
Date of revision:
Handle: RePEc:mtl:montec:10-2003
Contact details of provider: Postal:
C.P. 6128, Succ. centre-ville, Montréal (PQ) H3C 3J7

Phone: (514) 343-6557
Fax: (514) 343-7221
Web page: http://www.cireq.umontreal.ca
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Frank Kleibergen, 2002. "Pivotal Statistics for Testing Structural Parameters in Instrumental Variables Regression," Econometrica, Econometric Society, vol. 70(5), pages 1781-1803, September.
  2. Maddala, G S & Jeong, Jinook, 1992. "On the Exact Small Sample Distribution of the Instrumental Variable Estimator," Econometrica, Econometric Society, vol. 60(1), pages 181-83, January.
  3. Frank Kleibergen & Eric Zivot, 2003. "Bayesian and Classical Approaches to Instrumental Variable Regression," Working Papers UWEC-2002-21-P, University of Washington, Department of Economics.
  4. Hahn, Jinyong & Hausman, Jerry, 2002. "Notes on bias in estimators for simultaneous equation models," Economics Letters, Elsevier, vol. 75(2), pages 237-241, April.
  5. Banerjee, Anindya & Dolado, Juan J. & Galbraith, John W. & Hendry, David, 1993. "Co-integration, Error Correction, and the Econometric Analysis of Non-Stationary Data," OUP Catalogue, Oxford University Press, number 9780198288107, December.
  6. Benoit Perron, 2000. "Semi-Parametric Weak Instrument Regressions with an Application to the Risk-return Trade-off," Econometric Society World Congress 2000 Contributed Papers 1576, Econometric Society.
  7. Marc Hallin & Jean-Marie Dufour & Ivan Mizera, 1998. "Generalized run tests for heteroscedastic time series," ULB Institutional Repository 2013/2077, ULB -- Universite Libre de Bruxelles.
  8. DUFOUR, Jean-Marie, 2000. "Économétrie, théorie des tests et philosophie des sciences," Cahiers de recherche 2000-14, Universite de Montreal, Departement de sciences economiques.
  9. Phillips, Peter C B, 1985. "The Exact Distribution of LIML: II," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 26(1), pages 21-36, February.
  10. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
  11. John Bound & David A. Jaeger & Regina Baker, 1993. "The Cure Can Be Worse than the Disease: A Cautionary Tale Regarding Instrumental Variables," NBER Technical Working Papers 0137, National Bureau of Economic Research, Inc.
  12. Alastair R. Hall & Fernanda P. M. Peixe, 2003. "A Consistent Method for the Selection of Relevant Instruments," Econometric Reviews, Taylor & Francis Journals, vol. 22(3), pages 269-287, January.
  13. Marcelo J. Moreira, 2003. "A Conditional Likelihood Ratio Test for Structural Models," Econometrica, Econometric Society, vol. 71(4), pages 1027-1048, 07.
  14. Dufour, Jean-Marie, 1990. "Exact Tests and Confidence Sets in Linear Regressions with Autocorrelated Errors," Econometrica, Econometric Society, vol. 58(2), pages 475-94, March.
  15. Angrist, Joshua D & Krueger, Alan B, 1995. "Split-Sample Instrumental Variables Estimates of the Return to Schooling," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(2), pages 225-35, April.
  16. Douglas Staiger & James H. Stock, 1994. "Instrumental Variables Regression with Weak Instruments," NBER Technical Working Papers 0151, National Bureau of Economic Research, Inc.
  17. Choi, In & Phillips, Peter C. B., 1992. "Asymptotic and finite sample distribution theory for IV estimators and tests in partially identified structural equations," Journal of Econometrics, Elsevier, vol. 51(1-2), pages 113-150.
  18. Dufour, J.M., 1979. "Rank Tests for Serial Dependence," Cahiers de recherche 7815, Universite de Montreal, Departement de sciences economiques.
  19. Sims, Christopher A, 1971. "Discrete Approximations to Continuous Time Distributed Lags in Econometrics," Econometrica, Econometric Society, vol. 39(3), pages 545-63, May.
  20. Cochrane, John H., 1991. "A critique of the application of unit root tests," Journal of Economic Dynamics and Control, Elsevier, vol. 15(2), pages 275-284, April.
  21. Dufour, J.M. & Kiviet, J.F., 1995. "Exact Inference Methods for First-Order Autoregressive Distributed Lag Models," Cahiers de recherche 9547, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  22. Sargan, J D, 1983. "Identification and Lack of Identification," Econometrica, Econometric Society, vol. 51(6), pages 1605-33, November.
  23. Blough, Stephen R, 1992. "The Relationship between Power and Level for Generic Unit Root Tests in Finite Samples," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(3), pages 295-308, July-Sept.
  24. Jean-Marie Dufour, 2001. "Logiques et tests d'hypothèses : réflexions sur les problèmes mal posés en économétrie," CIRANO Working Papers 2001s-40, CIRANO.
  25. James G. MacKinnon, 2002. "Bootstrap inference in econometrics," Canadian Journal of Economics, Canadian Economics Association, vol. 35(4), pages 615-645, November.
  26. Jean-Marie Dufour, 1997. "Some Impossibility Theorems in Econometrics with Applications to Structural and Dynamic Models," Econometrica, Econometric Society, vol. 65(6), pages 1365-1388, November.
  27. Dufour, Jean-Marie & Jasiak, Joann, 2001. "Finite Sample Limited Information Inference Methods for Structural Equations and Models with Generated Regressors," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 42(3), pages 815-43, August.
  28. Rothenberg, Thomas J, 1971. "Identification in Parametric Models," Econometrica, Econometric Society, vol. 39(3), pages 577-91, May.
  29. Davidson, Russell & MacKinnon, James G., 1993. "Estimation and Inference in Econometrics," OUP Catalogue, Oxford University Press, number 9780195060119, December.
  30. Hillier, Grant H, 1990. "On the Normalization of Structural Equations: Properties of Direct Estimators," Econometrica, Econometric Society, vol. 58(5), pages 1181-94, September.
  31. Horowitz, Joel L., 2001. "The bootstrap and hypothesis tests in econometrics," Journal of Econometrics, Elsevier, vol. 100(1), pages 37-40, January.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:mtl:montec:10-2003. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sharon BREWER)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.