IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Identification, Weak Instruments and Statistical Inference in Econometrics

  • DUFOUR, Jean-Marie
Registered author(s):

    We discuss statistical inference problems associated with identification and testability in econometrics, and we emphasize the common nature of the two issues. After reviewing the relevant statistical notions, we consider in turn inference in nonparametric models and recent developments on weakly identified models (or weak instruments). We point out that many hypotheses, for which test procedures are commonly proposed, are not testable at all, while some frequently used econometric methods are fundamentally inappropriate for the models considered. Such situations lead to ill-defined statistical problems and are often associated with a misguided use of asymptotic distributional results. Concerning nonparametric hypotheses, we discuss three basic problems for which such difficulties occur : (1) testing a mean (or a moment) under (too) weak distributional assumptions; (2) inference under heteroskedasticity of unknown form; (3) inference in dynamic models with an unlimited number of parameters. Concerning weakly identified models, we stress that valid inference should be based on proper pivotal functions —a condition not satisfied by standard Wald-type methods based on standard errors — and we discuss recent developments in this field, mainly from the viewpoint of building valid tests and confidence sets. The techniques discussed include alternative proposed statistics, bounds, projection, split-sampling, conditioning, Monte Carlo tests. The possibility of deriving a finite-sample distributional theory, robustness to the presence of weak instruments, and robustness to the specification of a model for endogenous explanatory variables are stressed as important criteria assessing alternative procedures.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.cireqmontreal.com/wp-content/uploads/cahiers/10-2003-cah.pdf
    Download Restriction: no

    Paper provided by Centre interuniversitaire de recherche en économie quantitative, CIREQ in its series Cahiers de recherche with number 10-2003.

    as
    in new window

    Length: 39 pages
    Date of creation: 2003
    Date of revision:
    Handle: RePEc:mtl:montec:10-2003
    Contact details of provider: Postal: C.P. 6128, Succ. centre-ville, Montréal (PQ) H3C 3J7
    Phone: (514) 343-6557
    Fax: (514) 343-7221
    Web page: http://www.cireq.umontreal.ca
    Email:


    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Frank Kleibergen & Eric Zivot, 1998. "Bayesian and Classical Approaches to Instrumental Variable Regression," Discussion Papers in Economics at the University of Washington 0063, Department of Economics at the University of Washington.
    2. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    3. Benoit Perron, 2002. "Semi-Parametric Weak Instrument Regressions with an Application to the Risk-Return Trade-off," CIRANO Working Papers 2002s-88, CIRANO.
    4. Dufour, J.M. & Kiviet, J.F., 1995. "Exact Inference Methods for First-Order Autoregressive Distributed Lag Models," Cahiers de recherche 9547, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    5. Horowitz, Joel L., 2001. "The bootstrap and hypothesis tests in econometrics," Journal of Econometrics, Elsevier, vol. 100(1), pages 37-40, January.
    6. Sargan, J D, 1983. "Identification and Lack of Identification," Econometrica, Econometric Society, vol. 51(6), pages 1605-33, November.
    7. repec:dgr:uvatin:2001055 is not listed on IDEAS
    8. Alastair R. Hall & Fernanda P. M. Peixe, 2003. "A Consistent Method for the Selection of Relevant Instruments," Econometric Reviews, Taylor & Francis Journals, vol. 22(3), pages 269-287, January.
    9. Rothenberg, Thomas J, 1971. "Identification in Parametric Models," Econometrica, Econometric Society, vol. 39(3), pages 577-91, May.
    10. Marc Hallin & Jean-Marie Dufour & Ivan Mizera, 1998. "Generalized run tests for heteroscedastic time series," ULB Institutional Repository 2013/2077, ULB -- Universite Libre de Bruxelles.
    11. Sims, Christopher A, 1971. "Discrete Approximations to Continuous Time Distributed Lags in Econometrics," Econometrica, Econometric Society, vol. 39(3), pages 545-63, May.
    12. Choi, In & Phillips, Peter C. B., 1992. "Asymptotic and finite sample distribution theory for IV estimators and tests in partially identified structural equations," Journal of Econometrics, Elsevier, vol. 51(1-2), pages 113-150.
    13. Dufour, Jean-Marie & Jasiak, Joann, 2001. "Finite Sample Limited Information Inference Methods for Structural Equations and Models with Generated Regressors," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 42(3), pages 815-43, August.
    14. Cochrane, John H., 1991. "A critique of the application of unit root tests," Journal of Economic Dynamics and Control, Elsevier, vol. 15(2), pages 275-284, April.
    15. Blough, Stephen R, 1992. "The Relationship between Power and Level for Generic Unit Root Tests in Finite Samples," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(3), pages 295-308, July-Sept.
    16. Dufour, J.M., 1981. "Rank Tests for Serial Dependence," Cahiers de recherche 8127, Universite de Montreal, Departement de sciences economiques.
    17. John Bound & David A. Jaeger & Regina Baker, 1993. "The Cure Can Be Worse than the Disease: A Cautionary Tale Regarding Instrumental Variables," NBER Technical Working Papers 0137, National Bureau of Economic Research, Inc.
    18. Maddala, G S & Jeong, Jinook, 1992. "On the Exact Small Sample Distribution of the Instrumental Variable Estimator," Econometrica, Econometric Society, vol. 60(1), pages 181-83, January.
    19. Angrist, Joshua D & Krueger, Alan B, 1995. "Split-Sample Instrumental Variables Estimates of the Return to Schooling," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(2), pages 225-35, April.
    20. Davidson, Russell & MacKinnon, James G., 1993. "Estimation and Inference in Econometrics," OUP Catalogue, Oxford University Press, number 9780195060119, March.
    21. Hillier, Grant H, 1990. "On the Normalization of Structural Equations: Properties of Direct Estimators," Econometrica, Econometric Society, vol. 58(5), pages 1181-94, September.
    22. James G. MacKinnon, 2002. "Bootstrap inference in econometrics," Canadian Journal of Economics, Canadian Economics Association, vol. 35(4), pages 615-645, November.
    23. Banerjee, Anindya & Dolado, Juan J. & Galbraith, John W. & Hendry, David, 1993. "Co-integration, Error Correction, and the Econometric Analysis of Non-Stationary Data," OUP Catalogue, Oxford University Press, number 9780198288107, March.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:mtl:montec:10-2003. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sharon BREWER)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.