IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Detecting lack of identification in GMM

  • Jonathan H. Wright

In the standard linear instrumental variables regression model, it must be assumed that the instruments are correlated with the endogenous variables in order to ensure the consistency and asymptotic normality of the usual instrumental variables estimator. Indeed, if the instruments are only slightly correlated with the endogenous variables, the conventional Gaussian asymptotic theory may still provide a very poor approximation to the finite sample distribution of the usual instrumental variables estimator. Because of the crucial role of this identification condition, it is common to test for instrument relevance by a first-stage F-test. Identification issues also arise in the generalized method of moments model, of which the linear instrumental variables model is a special case. But I know of no means, in the existing literature, of testing for identification in this model. This paper proposes a test of the null of underidentification in the generalized method of moments model.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

File URL:
Download Restriction: no

Paper provided by Board of Governors of the Federal Reserve System (U.S.) in its series International Finance Discussion Papers with number 674.

in new window

Date of creation: 2000
Date of revision:
Handle: RePEc:fip:fedgif:674
Contact details of provider: Postal: 20th Street and Constitution Avenue, NW, Washington, DC 20551
Web page:

More information through EDIRC

Order Information: Web:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:fip:fedgif:674. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Kris Vajs)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.