IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Identification-robust inference for endogeneity parameters in linear structural models

  • Doko Tchatoka, Firmin
  • Dufour, Jean-Marie

We provide a generalization of the Anderson-Rubin (AR) procedure for inference on parameters which represent the dependence between possibly endogenous explanatory variables and disturbances in a linear structural equation (endogeneity parameters). We focus on second-order dependence and stress the distinction between regression and covariance endogeneity parameters. Such parameters have intrinsic interest (because they measure the effect of "common factors" which induce simultaneity) and play a central role in selecting an estimation method (because they determine "simultaneity biases" associated with least-squares methods). We observe that endogeneity parameters may not be identifiable and we give the relevant identification conditions. We develop identification-robust finite-sample tests for joint hypotheses involving structural and regression endogeneity parameters, as well as marginal hypotheses on regression endogeneity parameters. For Gaussian errors, we provide tests and confidence sets based on standard-type Fisher critical values. For a wide class of parametric non-Gaussian errors (possibly heavy-tailed), we also show that exact Monte Carlo procedures can be applied using the statistics considered. As a special case, this result also holds for usual AR-type tests on structural coefficients. For covariance endogeneity parameters, we supply an asymptotic (identification-robust) distributional theory. Tests for partial exogeneity hypotheses (for individual potentially endogenous explanatory variables) are covered as instances of the class of proposed procedures. The proposed procedures are applied to two empirical examples: the relation between trade and economic growth, and the widely studied problem of returns to education.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://mpra.ub.uni-muenchen.de/40695/1/MPRA_paper_40695.pdf
File Function: original version
Download Restriction: no

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 40695.

as
in new window

Length:
Date of creation: 16 Aug 2012
Date of revision:
Handle: RePEc:pra:mprapa:40695
Contact details of provider: Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: http://mpra.ub.uni-muenchen.de

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Kiviet, Jan F. & Niemczyk, Jerzy, 2007. "The asymptotic and finite sample distributions of OLS and simple IV in simultaneous equations," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3296-3318, April.
  2. Dufour, Jean-Marie & Taamouti, Mohamed, 2007. "Further results on projection-based inference in IV regressions with weak, collinear or missing instruments," Journal of Econometrics, Elsevier, vol. 139(1), pages 133-153, July.
  3. Jean-Marie Dufour, 2003. "Identification, Weak Instruments and Statistical Inference in Econometrics," CIRANO Working Papers 2003s-49, CIRANO.
  4. Marcelo J. Moreira, 2003. "A Conditional Likelihood Ratio Test for Structural Models," Econometrica, Econometric Society, vol. 71(4), pages 1027-1048, 07.
  5. Doko Tchatoka, Firmin & Dufour, Jean-Marie, 2012. "Identification-robust inference for endogeneity parameters in linear structural models," MPRA Paper 40695, University Library of Munich, Germany.
  6. Russell Davidson & James G. MacKinnon, 1987. "Testing for Consistency using Artificial Regressions," Working Papers 687, Queen's University, Department of Economics.
  7. Ruud, Paul A., 2000. "An Introduction to Classical Econometric Theory," OUP Catalogue, Oxford University Press, number 9780195111644, March.
  8. Irwin, Douglas A. & Tervio, Marko, 2002. "Does trade raise income?: Evidence from the twentieth century," Journal of International Economics, Elsevier, vol. 58(1), pages 1-18, October.
  9. Touhami Abdelkhalek & Jean-Marie Dufour, 1998. "Statistical Inference For Computable General Equilibrium Models, With Application To A Model Of The Moroccan Economy," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 520-534, November.
  10. Mankiw, N Gregory & Romer, David & Weil, David N, 1992. "A Contribution to the Empirics of Economic Growth," The Quarterly Journal of Economics, MIT Press, vol. 107(2), pages 407-37, May.
  11. Hwang, Hae-shin, 1985. "The equivalence of Hausman and Lagrange Multiplier tests of independence between disturbance and a subset of stochastic regressors," Economics Letters, Elsevier, vol. 17(1-2), pages 83-86.
  12. J. A. Hausman, 1976. "Specification Tests in Econometrics," Working papers 185, Massachusetts Institute of Technology (MIT), Department of Economics.
  13. Jan F. Kiviet, 2013. "Identification and inference in a simultaneous equation under alternative information sets and sampling schemes," Econometrics Journal, Royal Economic Society, vol. 16(1), pages S24-S59, 02.
  14. Dufour, J.-M., 1986. "Exact tests and confidence sets in linear regressions with autocorrelated errors," CORE Discussion Papers 1986037, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  15. Joshua D. Angrist & Alan B. Krueger, 1990. "Does Compulsory School Attendance Affect Schooling and Earnings?," NBER Working Papers 3572, National Bureau of Economic Research, Inc.
  16. Revankar, Nagesh S & Hartley, Michael J, 1973. "An Independence Test and Conditional Unbiased Predictions in the Context of Simultaneous Equation Systems," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 14(3), pages 625-31, October.
  17. Ann Harrison, 1995. "Openness and Growth: A Time-Series, Cross-Country Analysis for Developing Countries," NBER Working Papers 5221, National Bureau of Economic Research, Inc.
  18. DUFOUR, Jean-Marie & TAAMOUTI, Mohamed, 2003. "Projection-Based Statistical Inference in Linear Structural Models with Possibly Weak Instruments," Cahiers de recherche 2003-10, Universite de Montreal, Departement de sciences economiques.
  19. Stock, James H & Wright, Jonathan H & Yogo, Motohiro, 2002. "A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 518-29, October.
  20. Frank Kleibergen, 2002. "Pivotal Statistics for Testing Structural Parameters in Instrumental Variables Regression," Econometrica, Econometric Society, vol. 70(5), pages 1781-1803, September.
  21. DUFOUR, Jean-Marie, 2003. "Identification, Weak Instruments and Statistical Inference in Econometrics," Cahiers de recherche 10-2003, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  22. Wong, Ka-fu, 1996. "Bootstrapping Hausman's exogeneity test," Economics Letters, Elsevier, vol. 53(2), pages 139-143, November.
  23. Hausman, Jerry A. & Taylor, William E., 1981. "A generalized specification test," Economics Letters, Elsevier, vol. 8(3), pages 239-245.
  24. Jan F. KIVIET & Milan PLEUS, 2012. "The performance of tests on endogeneity of subsets of explanatory variables scanned by simulation," Economic Growth Centre Working Paper Series 1208, Nanyang Technological University, School of Humanities and Social Sciences, Economic Growth Centre.
  25. David H. Romer & Jeffrey A. Frankel, 1999. "Does Trade Cause Growth?," American Economic Review, American Economic Association, vol. 89(3), pages 379-399, June.
  26. Chmelarova, Viera & Hill, R. Carter, 2010. "The Hausman pretest estimator," Economics Letters, Elsevier, vol. 108(1), pages 96-99, July.
  27. Wu, De-Min, 1973. "Alternative Tests of Independence Between Stochastic Regressors and Disturbances," Econometrica, Econometric Society, vol. 41(4), pages 733-50, July.
  28. DUFOUR, Jean-Marie, 2005. "Monte Carlo Tests with Nuisance Parameters: A General Approach to Finite-Sample Inference and Nonstandard Asymptotics," Cahiers de recherche 2005-03, Universite de Montreal, Departement de sciences economiques.
  29. Christopher F Baum & Mark E. Schaffer & Steven Stillman, 2002. "Instrumental variables and GMM: Estimation and testing," North American Stata Users' Group Meetings 2003 05, Stata Users Group.
  30. Wu, De-Min, 1974. "Alternative Tests of Independence between Stochastic Regressors and Disturbances: Finite Sample Results," Econometrica, Econometric Society, vol. 42(3), pages 529-46, May.
  31. Doko Tchatoka, Firmin, 2012. "On the validity of Durbin-Wu-Hausman tests for assessing partial exogeneity hypotheses with possibly weak instruments," Working Papers 15061, University of Tasmania, School of Economics and Finance, revised 06 Jul 2012.
  32. Wu, De-Min, 1983. "A remark on a generalized specification test," Economics Letters, Elsevier, vol. 11(4), pages 365-370.
  33. Angrist, Joshua D & Krueger, Alan B, 1995. "Split-Sample Instrumental Variables Estimates of the Return to Schooling," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(2), pages 225-35, April.
  34. Russell W. Davidson & James G. MacKinnon, 1985. "The Interpretation of Test Statistics," Canadian Journal of Economics, Canadian Economics Association, vol. 18(1), pages 38-57, February.
  35. Dufour, Jean-Marie & Jasiak, Joann, 2001. "Finite Sample Limited Information Inference Methods for Structural Equations and Models with Generated Regressors," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 42(3), pages 815-43, August.
  36. Wu, De-Min, 1983. "Tests of Causality, Predeterminedness and Exogeneity," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 24(3), pages 547-58, October.
  37. Newey, Whitney K, 1985. "Maximum Likelihood Specification Testing and Conditional Moment Tests," Econometrica, Econometric Society, vol. 53(5), pages 1047-70, September.
  38. Douglas Staiger & James H. Stock, 1994. "Instrumental Variables Regression with Weak Instruments," NBER Technical Working Papers 0151, National Bureau of Economic Research, Inc.
  39. Hwang, Hae-Shin, 1980. "Test of Independence between a Subset of Stochastic Regressors and Disturbances," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 21(3), pages 749-60, October.
  40. Farebrother, R W, 1976. "A Remark on the Wu Test," Econometrica, Econometric Society, vol. 44(3), pages 475-77, May.
  41. Ruud, Paul A., 1984. "Tests of Specification in Econometrics," Department of Economics, Working Paper Series qt4kq8m0hf, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
  42. Jean-Marie Dufour, 1997. "Some Impossibility Theorems in Econometrics with Applications to Structural and Dynamic Models," Econometrica, Econometric Society, vol. 65(6), pages 1365-1388, November.
  43. Ahn, Seung C, 1997. "Orthogonality Tests in Linear Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 59(1), pages 183-86, February.
  44. Smith, Richard J, 1984. "A Note on Likelihood Ratio Tests for the Independence between a Subset of Stochastic Regressors and Disturbances," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 25(1), pages 263-69, February.
  45. Kiviet, Jan F. & Niemczyk, Jerzy, 2012. "Comparing the asymptotic and empirical (un)conditional distributions of OLS and IV in a linear static simultaneous equation," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3567-3586.
  46. Reynolds, Roger A, 1982. "Posterior Odds for the Hypothesis of Independence between Stochastic Regressors and Disturbances," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 23(2), pages 479-90, June.
  47. Thurman, Walter N, 1986. "Endogeneity Testing in a Supply and Demand Framework," The Review of Economics and Statistics, MIT Press, vol. 68(4), pages 638-46, November.
  48. Nakamura, Alice & Nakamura, Masao, 1981. "On the Relationships among Several Specification Error Tests Presented by Durbin, Wu, and Hausman," Econometrica, Econometric Society, vol. 49(6), pages 1583-88, November.
  49. K. Newey, Whitney, 1985. "Generalized method of moments specification testing," Journal of Econometrics, Elsevier, vol. 29(3), pages 229-256, September.
  50. Davidson, Russell & Godfrey, Leslie & MacKinnon, James G, 1985. "A Simplified Version of the Differencing Test," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 26(3), pages 639-47, October.
  51. Engle, Robert F., 1982. "A general approach to lagrange multiplier model diagnostics," Journal of Econometrics, Elsevier, vol. 20(1), pages 83-104, October.
  52. Barro, Robert J, 1977. "Unanticipated Money Growth and Unemployment in the United States," American Economic Review, American Economic Association, vol. 67(2), pages 101-15, March.
  53. Pesaran, M. Hashem & Smith, Richard J., 1990. "A unified approach to estimation and orthogonality tests in linear single-equation econometric models," Journal of Econometrics, Elsevier, vol. 44(1-2), pages 41-66.
  54. Smith, Richard J., 1985. "Wald tests for the independence of stochastic variables and disturbance of a single linear stochastic simultaneous equation," Economics Letters, Elsevier, vol. 17(1-2), pages 87-90.
  55. Nakamura, Alice & Nakamura, Masao, 1985. "On the performance of tests by Wu and by Hausman for detecting the ordinary least squares bias problem," Journal of Econometrics, Elsevier, vol. 29(3), pages 213-227, September.
  56. Jeong, Jinook & Yoon, Byung, 2007. "The Effect of Pseudo-exogenous Instrumental Variables on Hausman Test," MPRA Paper 9792, University Library of Munich, Germany.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:40695. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.