IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v31y2015i06p1192-1228_00.html
   My bibliography  Save this article

Subset Hypotheses Testing And Instrument Exclusion In The Linear Iv Regression

Author

Listed:
  • Tchatoka, Firmin Doko

Abstract

This paper investigates the asymptotic size properties of robust subset tests when instruments are left out of the analysis. Recently, robust subset procedures have been developed for testing hypotheses which are specified on the subsets of the structural parameters or on the parameters associated with the included exogenous variables. It has been shown that they never over-reject the true parameter values even when nuisance parameters are not identified. However, their robustness to instrument exclusion has not been investigated. Instrument exclusion is an important problem in econometrics and there are at least two reasons to be concerned. Firstly, it is difficult in practice to assess whether an instrument has been omitted. For example, some components of the “identifying” instruments that are excluded from the structural equation may be quite uncertain or “left out” of the analysis. Secondly, in many instrumental variable (IV) applications, an infinite number of instruments are available for use in large sample estimation. This is particularly the case with most time series models. If a given variable, say Xt, is a legitimate instrument, so too are its lags Xt1; Xt2. Hence, instrument exclusion seems highly likely in most practical situations. After formulating a general asymptotic framework which allows one to study this issue in a convenient way, I consider two main setups: (1) the missing instruments are (possibly) relevant, and, (2) they are asymptotically weak. In both setups, I show that all subset procedures studied are in general consistent against instrument inclusion (hence asymptotically invalid for the subset hypothesis of interest). I characterize cases where consistency may not hold, but the asymptotic distribution is modified in a way that would lead to size distortions in large samples. I propose a “rule of thumb” which allows to practitioners to know whether a missing instrument is detrimental or not to subset procedures. I present a Monte Carlo
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Tchatoka, Firmin Doko, 2015. "Subset Hypotheses Testing And Instrument Exclusion In The Linear Iv Regression," Econometric Theory, Cambridge University Press, vol. 31(06), pages 1192-1228, December.
  • Handle: RePEc:cup:etheor:v:31:y:2015:i:06:p:1192-1228_00
    as

    Download full text from publisher

    File URL: http://journals.cambridge.org/abstract_S0266466614000462
    File Function: link to article abstract page
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bean, Charles R, 1994. "European Unemployment: A Survey," Journal of Economic Literature, American Economic Association, vol. 32(2), pages 573-619, June.
    2. Breusch, Trevor & Qian, Hailong & Schmidt, Peter & Wyhowski, Donald, 1999. "Redundancy of moment conditions," Journal of Econometrics, Elsevier, vol. 91(1), pages 89-111, July.
    3. Jean-Marie Dufour, 2003. "Identification, weak instruments, and statistical inference in econometrics," Canadian Journal of Economics, Canadian Economics Association, vol. 36(4), pages 767-808, November.
    4. Jean-Marie Dufour & Mohamed Taamouti, 2005. "Projection-Based Statistical Inference in Linear Structural Models with Possibly Weak Instruments," Econometrica, Econometric Society, vol. 73(4), pages 1351-1365, July.
    5. Phillips, P.C.B., 1989. "Partially Identified Econometric Models," Econometric Theory, Cambridge University Press, vol. 5(02), pages 181-240, August.
    6. Dufour, Jean-Marie & Khalaf, Lynda & Kichian, Maral, 2006. "Inflation dynamics and the New Keynesian Phillips Curve: An identification robust econometric analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1707-1727.
    7. Touhami Abdelkhalek & Jean-Marie Dufour, 1998. "Statistical Inference For Computable General Equilibrium Models, With Application To A Model Of The Moroccan Economy," The Review of Economics and Statistics, MIT Press, vol. 80(4), pages 520-534, November.
    8. Kocherlakota, Narayana R., 1990. "On tests of representative consumer asset pricing models," Journal of Monetary Economics, Elsevier, vol. 26(2), pages 285-304, October.
    9. Jean-Marie Dufour, 1997. "Some Impossibility Theorems in Econometrics with Applications to Structural and Dynamic Models," Econometrica, Econometric Society, vol. 65(6), pages 1365-1388, November.
    10. James M. Malcomson & Sophocles Mavroeidis, 2007. "Matching Frictions, Efficiency Wages, and Unemployment in the USA and the UK," Working Papers 2007-02, Brown University, Department of Economics.
    11. Choi, In & Phillips, Peter C. B., 1992. "Asymptotic and finite sample distribution theory for IV estimators and tests in partially identified structural equations," Journal of Econometrics, Elsevier, vol. 51(1-2), pages 113-150.
    12. Chaudhuri, Saraswata & Zivot, Eric, 2011. "A new method of projection-based inference in GMM with weakly identified nuisance parameters," Journal of Econometrics, Elsevier, vol. 164(2), pages 239-251, October.
    13. Dufour, Jean-Marie & Jasiak, Joann, 2001. "Finite Sample Limited Information Inference Methods for Structural Equations and Models with Generated Regressors," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 42(3), pages 815-843, August.
    14. Kleibergen, Frank & Mavroeidis, Sophocles, 2009. "Weak Instrument Robust Tests in GMM and the New Keynesian Phillips Curve," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(3), pages 293-311.
    15. Marcelo J. Moreira, 2003. "A Conditional Likelihood Ratio Test for Structural Models," Econometrica, Econometric Society, vol. 71(4), pages 1027-1048, July.
    16. Guggenberger, Patrik, 2012. "On The Asymptotic Size Distortion Of Tests When Instruments Locally Violate The Exogeneity Assumption," Econometric Theory, Cambridge University Press, vol. 28(02), pages 387-421, April.
    17. D. S. Poskitt & C. L. Skeels, 2009. "Assessing the magnitude of the concentration parameter in a simultaneous equations model," Econometrics Journal, Royal Economic Society, vol. 12(1), pages 26-44, March.
    18. Mavroeidis, Sophocles, 2005. "Identification Issues in Forward-Looking Models Estimated by GMM, with an Application to the Phillips Curve," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 421-448, June.
    19. Hansen, Lars Peter & Heaton, John & Yaron, Amir, 1996. "Finite-Sample Properties of Some Alternative GMM Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 262-280, July.
    20. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    21. Frank Kleibergen, 2005. "Testing Parameters in GMM Without Assuming that They Are Identified," Econometrica, Econometric Society, vol. 73(4), pages 1103-1123, July.
    22. Frank Kleibergen, 2002. "Pivotal Statistics for Testing Structural Parameters in Instrumental Variables Regression," Econometrica, Econometric Society, vol. 70(5), pages 1781-1803, September.
    23. Stock, James H & Wright, Jonathan H & Yogo, Motohiro, 2002. "A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 518-529, October.
    24. Dufour, Jean-Marie, 1990. "Exact Tests and Confidence Sets in Linear Regressions with Autocorrelated Errors," Econometrica, Econometric Society, vol. 58(2), pages 475-494, March.
    25. Hall, Alastair R. & Inoue, Atsushi & Jana, Kalidas & Shin, Changmock, 2007. "Information in generalized method of moments estimation and entropy-based moment selection," Journal of Econometrics, Elsevier, vol. 138(2), pages 488-512, June.
    26. Dufour, Jean-Marie & Taamouti, Mohamed, 2007. "Further results on projection-based inference in IV regressions with weak, collinear or missing instruments," Journal of Econometrics, Elsevier, vol. 139(1), pages 133-153, July.
    27. James H. Stock & Jonathan Wright, 2000. "GMM with Weak Identification," Econometrica, Econometric Society, vol. 68(5), pages 1055-1096, September.
    28. Doko Tchatoka, Firmin Sabro & Dufour, Jean-Marie, 2008. "Instrument endogeneity and identification-robust tests: some analytical results," MPRA Paper 29613, University Library of Munich, Germany.
    29. Hansen, Christian & Hausman, Jerry & Newey, Whitney, 2008. "Estimation With Many Instrumental Variables," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 398-422.
    30. Kleibergen, Frank, 2009. "Tests of risk premia in linear factor models," Journal of Econometrics, Elsevier, vol. 149(2), pages 149-173, April.
    31. Sophocles Mavroeidis, 2004. "Weak Identification of Forward-looking Models in Monetary Economics," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 66(s1), pages 609-635, September.
    32. Tim Loughran & Jay Ritter, 2004. "Why Has IPO Underpricing Changed Over Time?," Financial Management, Financial Management Association, vol. 33(3), Fall.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Doko Tchatoka, Firmin Sabro, 2012. "Specification Tests with Weak and Invalid Instruments," MPRA Paper 40185, University Library of Munich, Germany.
    2. Firmin Doko Tchatoka, 2015. "On bootstrap validity for specification tests with weak instruments," Econometrics Journal, Royal Economic Society, vol. 18(1), pages 137-146, February.
    3. Firmin Doko Tchatoka & Wenjie Wang, 2015. "On Bootstrap Validity for Subset Anderson-Rubin Test in IV Regressions," School of Economics Working Papers 2015-01, University of Adelaide, School of Economics.
    4. Firmin Doko Tchatoka & Jean-Marie Dufour, 2016. "Exogeneity tests, weak identification, incomplete models and non-Gaussian distributions: Invariance and finite-sample distributional theory," School of Economics Working Papers 2016-01, University of Adelaide, School of Economics.
    5. Firmin DOKO TCHATOKA & Jean-Marie DUFOUR, 2016. "Exogeneity Tests, Incomplete Models, Weak Identification and Non-Gaussian Distributions : Invariance and Finite-Sample Distributional Theory," Cahiers de recherche 14-2016, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    6. Doko Tchatoka, Firmin, 2011. "Testing for partial exogeneity with weak identification," MPRA Paper 39504, University Library of Munich, Germany, revised Mar 2012.

    More about this item

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:31:y:2015:i:06:p:1192-1228_00. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Keith Waters). General contact details of provider: http://journals.cambridge.org/jid_ECT .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.