IDEAS home Printed from https://ideas.repec.org/p/msh/ebswps/2004-29.html
   My bibliography  Save this paper

Assessing the Magnitude of the Concentration Parameter in a Simultaneous Equations Model

Author

Abstract

Poskitt and Skeels (2003) provide a new approximation to the sampling distribution of the IV estimator in a simultaneous equations model. This approximation is appropriate when the concentration parameter associated with the reduced form model is small and a basic purpose of this paper is to provide the practitioner with a method of ascertaining when the concentration parameter is small, and hence when the use of the Poskitt and Skeels (2003) approximation is appropriate. Existing procedures tend to focus on the notion of correlation and hypothesis testing. Approaching the problem from a different perspective leads us to advocate a different statistic for use in this problem. We provide exact and approximate distribution theory for the proposed statistic and show that it satisfies various optimality criteria not satisfied by some of its competitors. Rather than adopting a testing approach we suggest the use of p-values as a calibration device.

Suggested Citation

  • D. S. Poskitt & C. L. Skeels, 2004. "Assessing the Magnitude of the Concentration Parameter in a Simultaneous Equations Model," Monash Econometrics and Business Statistics Working Papers 29/04, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:2004-29
    as

    Download full text from publisher

    File URL: http://www.buseco.monash.edu.au/ebs/pubs/wpapers/2004/wp29-04.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Phillips, P C B, 1980. "The Exact Distribution of Instrumental Variable Estimators in an Equation Containing n + 1 Endogenous Variables," Econometrica, Econometric Society, vol. 48(4), pages 861-878, May.
    2. Stock, James H & Wright, Jonathan H & Yogo, Motohiro, 2002. "A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 518-529, October.
    3. Cragg, John G. & Donald, Stephen G., 1993. "Testing Identifiability and Specification in Instrumental Variable Models," Econometric Theory, Cambridge University Press, vol. 9(2), pages 222-240, April.
    4. Phillips, P.C.B., 1983. "Exact small sample theory in the simultaneous equations model," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 1, chapter 8, pages 449-516, Elsevier.
    5. Hall, Alastair R & Rudebusch, Glenn D & Wilcox, David W, 1996. "Judging Instrument Relevance in Instrumental Variables Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 37(2), pages 283-298, May.
    6. D. S. Poskitt & C. L. Skeels, 2004. "Approximating the Distribution of the Instrumental Variables Estimator when the Concentration Parameter is Small," Monash Econometrics and Business Statistics Working Papers 19/04, Monash University, Department of Econometrics and Business Statistics.
    7. Mariano, Roberto S, 1982. "Analytical Small-Sample Distribution Theory in Econometrics: The Simultaneous-Equations Case," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 23(3), pages 503-533, October.
    8. John Shea, 1997. "Instrument Relevance in Multivariate Linear Models: A Simple Measure," The Review of Economics and Statistics, MIT Press, vol. 79(2), pages 348-352, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Poskitt, D.S. & Skeels, C.L., 2007. "Approximating the distribution of the two-stage least squares estimator when the concentration parameter is small," Journal of Econometrics, Elsevier, vol. 139(1), pages 217-236, July.
    2. Don S. Poskitt, 2020. "On GMM Inference: Partial Identification, Identification Strength, and Non-Standard," Monash Econometrics and Business Statistics Working Papers 40/20, Monash University, Department of Econometrics and Business Statistics.
    3. Vivienne Pham & David Prentice, 2010. "An empirical Analysis of the Counter-factual: A Merger and Divestiture in the Australian Cigarette Industry," Working Papers 2010.08, School of Economics, La Trobe University.
    4. Tchatoka, Firmin Doko, 2015. "Subset Hypotheses Testing And Instrument Exclusion In The Linear Iv Regression," Econometric Theory, Cambridge University Press, vol. 31(6), pages 1192-1228, December.
    5. Matthew C. Harding & Jerry Hausman & Christopher Palmer, 2015. "Finite sample bias corrected IV estimation for weak and many instruments," CeMMAP working papers CWP41/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    6. Zhenhong Huang & Chen Wang & Jianfeng Yao, 2023. "The First-stage F Test with Many Weak Instruments," Papers 2302.14423, arXiv.org, revised Sep 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:bla:ecorec:v:91:y:2015:i::p:1-24 is not listed on IDEAS
    2. Vieira, Flávio & MacDonald, Ronald & Damasceno, Aderbal, 2012. "The role of institutions in cross-section income and panel data growth models: A deeper investigation on the weakness and proliferation of instruments," Journal of Comparative Economics, Elsevier, vol. 40(1), pages 127-140.
    3. Paul A. Bekker & Jan van der Ploeg, 2000. "Instrumental Variable Estimation Based on Grouped Data," Econometric Society World Congress 2000 Contributed Papers 1862, Econometric Society.
    4. Jean-Marie Dufour, 2003. "Identification, weak instruments, and statistical inference in econometrics," Canadian Journal of Economics, Canadian Economics Association, vol. 36(4), pages 767-808, November.
    5. Richard Startz & Charles Nelson & Eric Zivot, 1999. "Improved Inference for the Instrumental Variable Estimator," Working Papers 0039, University of Washington, Department of Economics.
    6. Dufour, Jean-Marie & Taamouti, Mohamed, 2007. "Further results on projection-based inference in IV regressions with weak, collinear or missing instruments," Journal of Econometrics, Elsevier, vol. 139(1), pages 133-153, July.
    7. Jean-Marie Dufour & Mohamed Taamouti, 2005. "Projection-Based Statistical Inference in Linear Structural Models with Possibly Weak Instruments," Econometrica, Econometric Society, vol. 73(4), pages 1351-1365, July.
    8. Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91(S1), pages 1-24, June.
    9. Fuhrer, Jeffrey C. & Rudebusch, Glenn D., 2004. "Estimating the Euler equation for output," Journal of Monetary Economics, Elsevier, vol. 51(6), pages 1133-1153, September.
    10. D. S. Poskitt & C. L. Skeels, 2004. "Approximating the Distribution of the Instrumental Variables Estimator when the Concentration Parameter is Small," Monash Econometrics and Business Statistics Working Papers 19/04, Monash University, Department of Econometrics and Business Statistics.
    11. Murray Michael P., 2017. "Linear Model IV Estimation When Instruments Are Many or Weak," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-22, January.
    12. D.S. Poskitt & C.L. Skeels, 2002. "Assessing Instrumental Variable Relevance:An Alternative Measure and Some Exact Finite Sample Theory," Department of Economics - Working Papers Series 862, The University of Melbourne.
    13. Poskitt, D.S. & Skeels, C.L., 2007. "Approximating the distribution of the two-stage least squares estimator when the concentration parameter is small," Journal of Econometrics, Elsevier, vol. 139(1), pages 217-236, July.
    14. Adam Hale Shapiro, 2008. "Estimating the New Keynesian Phillips Curve: A Vertical Production Chain Approach," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 40(4), pages 627-666, June.
    15. Tito Belchior Silva Moreira & Benjamin Miranda Tabak & Mario Jorge Mendonça & Adolfo Sachsida, 2016. "An Evaluation of the Non-Neutrality of Money," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-20, March.
    16. Donald W.K. Andrews & James H. Stock, 2005. "Inference with Weak Instruments," NBER Technical Working Papers 0313, National Bureau of Economic Research, Inc.
    17. Schwerdt, Guido & Messer, Dolores & Woessmann, Ludger & Wolter, Stefan C., 2012. "The impact of an adult education voucher program: Evidence from a randomized field experiment," Journal of Public Economics, Elsevier, vol. 96(7-8), pages 569-583.
    18. Phillips, Peter C.B., 2006. "A Remark On Bimodality And Weak Instrumentation In Structural Equation Estimation," Econometric Theory, Cambridge University Press, vol. 22(5), pages 947-960, October.
    19. Alla Koblyakova & Larisa Fleishman & Orly Furman, 2022. "Accuracy of Households’ Dwelling Valuations, Housing Demand and Mortgage Decisions: Israeli Case," The Journal of Real Estate Finance and Economics, Springer, vol. 65(1), pages 48-74, July.
    20. D.S. Poskitt & C.L. Skeels, 2005. "Small Concentration Asymptotics and Instrumental Variables Inference," Department of Economics - Working Papers Series 948, The University of Melbourne.
    21. P. Dorian Owen, 2017. "Evaluating Ingenious Instruments for Fundamental Determinants of Long-Run Economic Growth and Development," Econometrics, MDPI, vol. 5(3), pages 1-33, September.

    More about this item

    Keywords

    Concentration parameter; simultaneous equations model; alienation coefficient; Wilks-lambda distribution; admissible invariant test.;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C39 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Other
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2004-29. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Professor Xibin Zhang (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.