IDEAS home Printed from https://ideas.repec.org/p/boc/bocoec/667.html
   My bibliography  Save this paper

Enhanced routines for instrumental variables/GMM estimation and testing

Author

Listed:
  • Christopher F Baum

    (Boston College)

  • Mark E. Schaffer

    (Heriot-Watt University)

  • Steven Stillman

    (Motu Economic and Public Policy Research)

Abstract

We extend our 2003 paper on instrumental variables (IV) and GMM estimation and testing and describe enhanced routines that address HAC standard errors, weak instruments, LIML and k-class estimation, tests for endogeneity and RESET and autocorrelation tests for IV estimates.

Suggested Citation

  • Christopher F Baum & Mark E. Schaffer & Steven Stillman, 2007. "Enhanced routines for instrumental variables/GMM estimation and testing," Boston College Working Papers in Economics 667, Boston College Department of Economics, revised 05 Sep 2007.
  • Handle: RePEc:boc:bocoec:667
    as

    Download full text from publisher

    File URL: http://fmwww.bc.edu/EC-P/wp667.pdf
    File Function: main text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Christopher F Baum & Mark E. Schaffer & Steven Stillman, 2003. "Instrumental variables and GMM: Estimation and testing," Stata Journal, StataCorp LP, vol. 3(1), pages 1-31, March.
    2. Jean-Marie Dufour, 2003. "Identification, weak instruments, and statistical inference in econometrics," Canadian Journal of Economics, Canadian Economics Association, vol. 36(4), pages 767-808, November.
    3. Kleibergen, Frank & Paap, Richard, 2006. "Generalized reduced rank tests using the singular value decomposition," Journal of Econometrics, Elsevier, vol. 133(1), pages 97-126, July.
    4. Hall, Alastair R & Rudebusch, Glenn D & Wilcox, David W, 1996. "Judging Instrument Relevance in Instrumental Variables Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 37(2), pages 283-298, May.
    5. Marcelo J. Moreira & Brian P. Poi, 2003. "Implementing tests with correct size in the simultaneous equations model," Stata Journal, StataCorp LP, vol. 3(1), pages 57-70, March.
    6. Whitney K. Newey & Kenneth D. West, 1994. "Automatic Lag Selection in Covariance Matrix Estimation," Review of Economic Studies, Oxford University Press, vol. 61(4), pages 631-653.
    7. Chernozhukov, Victor & Hansen, Christian, 2008. "The reduced form: A simple approach to inference with weak instruments," Economics Letters, Elsevier, vol. 100(1), pages 68-71, July.
    8. Ahn, Seung C, 1997. "Orthogonality Tests in Linear Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 59(1), pages 183-186, February.
    9. Newey, Whitney K & West, Kenneth D, 1987. "Hypothesis Testing with Efficient Method of Moments Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 28(3), pages 777-787, October.
    10. Cumby, Robert E & Huizinga, John, 1992. "Testing the Autocorrelation Structure of Disturbances in Ordinary Least Squares and Instrumental Variables Regressions," Econometrica, Econometric Society, vol. 60(1), pages 185-195, January.
    11. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    12. Michael C. Lovell, 1963. "Seasonal Adjustment of Economic Time Series and Multiple Regression," Cowles Foundation Discussion Papers 151, Cowles Foundation for Research in Economics, Yale University.
    13. Fuller, Wayne A, 1977. "Some Properties of a Modification of the Limited Information Estimator," Econometrica, Econometric Society, vol. 45(4), pages 939-953, May.
    14. Anna Mikusheva & Brian P. Poi, 2006. "Tests and confidence sets with correct size when instruments are potentially weak," Stata Journal, StataCorp LP, vol. 6(3), pages 335-347, September.
    15. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    16. Stock, James H & Wright, Jonathan H & Yogo, Motohiro, 2002. "A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 518-529, October.
    17. Jinyong Hahn & Jerry Hausman & Guido Kuersteiner, 2004. "Estimation with weak instruments: Accuracy of higher-order bias and MSE approximations," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 272-306, June.
    18. James H. Stock & Jonathan Wright, 2000. "GMM with Weak Identification," Econometrica, Econometric Society, vol. 68(5), pages 1055-1096, September.
    19. Frank Kleibergen & Mark E Schaffer & Frank Windmeijer, 2007. "RANKTEST: Stata module to test the rank of a matrix," Statistical Software Components S456865, Boston College Department of Economics, revised 29 Sep 2020.
    20. Christopher F Baum, 2006. "An Introduction to Modern Econometrics using Stata," Stata Press books, StataCorp LP, number imeus, March.
    21. Breusch, Trevor & Qian, Hailong & Schmidt, Peter & Wyhowski, Donald, 1999. "Redundancy of moment conditions," Journal of Econometrics, Elsevier, vol. 91(1), pages 89-111, July.
    22. Alastair R. Hall & Fernanda P. M. Peixe, 2003. "A Consistent Method for the Selection of Relevant Instruments," Econometric Reviews, Taylor & Francis Journals, vol. 22(3), pages 269-287, January.
    23. Davidson, Russell & MacKinnon, James G., 1993. "Estimation and Inference in Econometrics," OUP Catalogue, Oxford University Press, number 9780195060119.
    24. Hahn, Jinyong & Hausman, Jerry, 2002. "Notes on bias in estimators for simultaneous equation models," Economics Letters, Elsevier, vol. 75(2), pages 237-241, April.
    25. Pesaran, M Hashem & Taylor, Larry W, 1999. "Diagnostics for IV Regressions," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(2), pages 255-281, May.
    26. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    27. Cragg, John G. & Donald, Stephen G., 1993. "Testing Identifiability and Specification in Instrumental Variable Models," Econometric Theory, Cambridge University Press, vol. 9(2), pages 222-240, April.
    28. repec:cup:etheor:v:9:y:1993:i:2:p:222-40 is not listed on IDEAS
    29. Hansen, Lars Peter & Heaton, John & Yaron, Amir, 1996. "Finite-Sample Properties of Some Alternative GMM Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 262-280, July.
    30. Hall, Alastair R., 2004. "Generalized Method of Moments," OUP Catalogue, Oxford University Press, number 9780198775201.
    31. Adrian R Pagan & Anthony D Hall, 1983. "Diagnostic tests as residual analysis," Published Paper Series 1983-1, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    32. D.S. Poskitt & C.L. Skeels, 2002. "Assessing Instrumental Variable Relevance:An Alternative Measure and Some Exact Finite Sample Theory," Department of Economics - Working Papers Series 862, The University of Melbourne.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christopher F Baum & Mark E. Schaffer & Steven Stillman, 2007. "Enhanced routines for instrumental variables/generalized method of moments estimation and testing," Stata Journal, StataCorp LP, vol. 7(4), pages 465-506, December.
    2. Murray Michael P., 2017. "Linear Model IV Estimation When Instruments Are Many or Weak," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-22, January.
    3. Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91(S1), pages 1-24, June.
    4. Mardi Dungey & Vitali Alexeev & Jing Tian & Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91, pages 1-24, June.
    5. Aniket A. Kawatkar & Joel W. Hay & William Stohl & Michael B. Nichol, 2013. "Incremental Expenditure Of Biologic Disease Modifying Antirheumatic Treatment Using Instrumental Variables In Panel Data," Health Economics, John Wiley & Sons, Ltd., vol. 22(7), pages 807-823, July.
    6. Guilhem Bascle, 2008. "Controlling for endogeneity with instrumental variables in strategic management research," Post-Print hal-00576795, HAL.
    7. Dufour, Jean-Marie & Taamouti, Mohamed, 2007. "Further results on projection-based inference in IV regressions with weak, collinear or missing instruments," Journal of Econometrics, Elsevier, vol. 139(1), pages 133-153, July.
    8. Marjan Petreski, 2010. "An Overhaul of a Doctrine: Has Inflation Targeting Opened a New Era in Developing-country Peggers?," FIW Working Paper series 057, FIW.
    9. Frank Kleibergen, 2004. "Expansions of GMM statistics that indicate their properties under weak and/or many instruments and the bootstrap," Econometric Society 2004 North American Summer Meetings 408, Econometric Society.
    10. Stephen Knowles & P. Dorian Owen, 2010. "Which Institutions are Good for Your Health? The Deep Determinants of Comparative Cross-country Health Status," Journal of Development Studies, Taylor & Francis Journals, vol. 46(4), pages 701-723.
    11. Jean-Marie Dufour & Mohamed Taamouti, 2005. "Projection-Based Statistical Inference in Linear Structural Models with Possibly Weak Instruments," Econometrica, Econometric Society, vol. 73(4), pages 1351-1365, July.
    12. Marjan Petreski, 2013. "Overhaul of a Doctrine," Eastern European Economics, Taylor & Francis Journals, vol. 51(5), pages 46-68, September.
    13. Mikusheva, Anna, 2013. "Survey on statistical inferences in weakly-identified instrumental variable models," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 29(1), pages 117-131.
    14. Sophocles Mavroeidis, 2006. "Testing the New Keynesian Phillips Curve Without Assuming Identification," Working Papers 2006-13, Brown University, Department of Economics.
    15. Guggenberger, Patrik & Ramalho, Joaquim J.S. & Smith, Richard J., 2012. "GEL statistics under weak identification," Journal of Econometrics, Elsevier, vol. 170(2), pages 331-349.
    16. Romanos Priftis & Anastasia Theofilakou, 2021. "Growth effects of corporate balance sheet adjustments in the EU," Empirical Economics, Springer, vol. 60(2), pages 773-801, February.
    17. Doko Tchatoka, Firmin Sabro, 2012. "Specification Tests with Weak and Invalid Instruments," MPRA Paper 40185, University Library of Munich, Germany.
    18. Doko Tchatoka, Firmin & Dufour, Jean-Marie, 2020. "Exogeneity tests, incomplete models, weak identification and non-Gaussian distributions: Invariance and finite-sample distributional theory," Journal of Econometrics, Elsevier, vol. 218(2), pages 390-418.
    19. Faff, Robert & Gray, Philip, 2006. "On the estimation and comparison of short-rate models using the generalised method of moments," Journal of Banking & Finance, Elsevier, vol. 30(11), pages 3131-3146, November.
    20. Gomes, Fábio Augusto Reis & Paz, Lourenço S., 2013. "Estimating the elasticity of intertemporal substitution: Is the aggregate financial return free from the weak instrument problem?," Journal of Macroeconomics, Elsevier, vol. 36(C), pages 63-75.

    More about this item

    Keywords

    instrumental variables; generalized method of moments; endogeneity; heteroskedasticity; autocorrelation; weak instruments; overidentifying restrictions;
    All these keywords.

    JEL classification:

    • C20 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C87 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Econometric Software

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boc:bocoec:667. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/debocus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F Baum (email available below). General contact details of provider: https://edirc.repec.org/data/debocus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.