IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Estimation with weak instruments: Accuracy of higher-order bias and MSE approximations

Listed author(s):
  • Jinyong Hahn
  • Jerry Hausman
  • Guido Kuersteiner

In this paper, we consider parameter estimation in a linear simultaneous equations model. It is well known that two-stage least squares (2SLS) estimators may perform poorly when the instruments are weak. In this case 2SLS tends to suffer from the substantial small sample biases. It is also known that LIML and Nagar-type estimators are less biased than 2SLS but suffer from large small sample variability. We construct a bias-corrected version of 2SLS based on the Jackknife principle. Using higher-order expansions we show that the MSE of our Jackknife 2SLS estimator is approximately the same as the MSE of the Nagar-type estimator. We also compare the Jackknife 2SLS with an estimator suggested by Fuller (Econometrica 45, 933--54) that significantly decreases the small sample variability of LIML. Monte Carlo simulations show that even in relatively large samples the MSE of LIML and Nagar can be substantially larger than for Jackknife 2SLS. The Jackknife 2SLS estimator and Fuller's estimator give the best overall performance. Based on our Monte Carlo experiments we conduct informal statistical tests of the accuracy of approximate bias and MSE formulas. We find that higher-order expansions traditionally used to rank LIML, 2SLS and other IV estimators are unreliable when identification of the model is weak. Overall, our results show that only estimators with well-defined finite sample moments should be used when identification of the model is weak. Copyright Royal Economic Socciety 2004

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: link to full text
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Royal Economic Society in its journal The Econometrics Journal.

Volume (Year): 7 (2004)
Issue (Month): 1 (06)
Pages: 272-306

in new window

Handle: RePEc:ect:emjrnl:v:7:y:2004:i:1:p:272-306
Contact details of provider: Postal:
2 Dean Trench Street, Westminster, SW1P 3HE

Phone: +44 20 3137 6301
Web page:

More information through EDIRC

Order Information: Web:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ect:emjrnl:v:7:y:2004:i:1:p:272-306. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing)

or (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.